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PREFACE 
 
  In this report, results are presented that forms the Master of Science thesis project in signal 
processing at KTH, Stockholm, Sweden. The author is studying at the electrotechnical 
program and the project has been performed at the Department of Signals, Sensors and 
Systems, S3. The thesis has been done commissioned and in the premises of Clavia DMI AB. 
  The project has consisted of a literature study, followed by computer simulations and finally 
the construction of a program for implementation in hardware. The work has been done in 
parallel with the Master of Science project by Leopold Roos at the department of Speech, 
Music and Hearing at KTH. 
 
ABSTRACT 
 
  The purpose of the project has been to find a fundamental frequency tracker with good 
properties that can be implemented in the current target system. 
  Essential relevant mathematical signal theory is presented briefly, for the understanding of 
the algorithms that are presented. 
  Theories for the algorithms that have been found in an extensive literature study and 
information search is presented. The algorithms are introduced groupwise, divided in time and 
spectral domain algorithms. In this section, all algorithms are presented without consideration 
to the computational load it demands. Also presented are the reasons why some of these have 
not been further evaluated. 
  The results from the computer simulations that have been performed are presented along 
with a discussion of the benefits and disadvantages of the algorithm. Since the factor 
complexity has been very important during the analysis, this has been the reason why some 
algorithms have been sorted out at an early stage. Especially analyzed has been an algorithm 
written by Cooper and Ng [1], which has been modified and developed into a new algorithm 
that has been named reduced ACF. 
  In the study of algorithms, there is also a study of the so called pre- and postprocessing of 
data. It has been shown, that a proper preprocessing makes a great difference in the result that 
the algorithm presents. An approach has been chosen, using recursive setting of a lowpass 
filters cutoff frequency and recursive setting of the level for a method called center-clipping 
and compression. 
  The implementation of the developed algorithm in the present hardware, the target system, is 
described. An explanation for how the specification of the target system has influenced the 
choice of algorithm is given. 



FÖRORD (Swedish Preface) 
 
  I denna rapport presenteras resultaten från det projekt som utgör ett examensarbete i 
signalbehandling vid KTH. Författaren läser vid elektroteknik linjen och examensarbetet har 
utförts vid institutionen för signaler, sensorer och system. Examensarbetet har utförts på 
uppdrag av och i lokaler hos Clavia DMI AB. 
  I arbetet har ingått en litteraturstudie, följt av datorsimuleringar och slutligen konstruktion av 
ett program för implementation i hårdvara. Arbetet har utförts parallellt med ett 
examensarbete utfört av Leopold Roos vid institutionen för tal, musik och hörsel vid KTH. 
 
SAMMANFATTNING (Swedish Abstract) 
  
  Syftet med projektet har varit att finna en grundtonfrekvens följare med goda egenskaper 
som kan implementeras i det aktuella målsystemet. 
  Relevant grundläggande matematisk signalteori presenteras kortfattat, som grund för 
förståelsen av de algoritmer som presenteras. 
  Teorier för de algoritmer som har hittats i en omfattande litteraturstudie presenteras. 
Algoritmerna presenteras gruppvis uppdelade i tids- och spektral domäns algoritmer.  I denna 
del presenteras alla algoritmer utan hänsyn till den beräkningsbörda de kräver. Här 
presenteras också anledningar till varför vissa av dessa inte har blivit fortsatt undersökta. 
  Resultat från de datorsimuleringar som har utförts presenteras tillsammans med en 
diskussion kring algoritmens för- och nackdelar. Då faktorn komplexitet har varit en viktig 
faktor vid analysen, har detta varit en anledning till att vissa algoritmer har sorterats bort på 
ett tidigt stadium. Speciellt analyseras en algoritm skriven av Cooper and Ng [1], vilken har 
modifierats och utvecklats till en ny algoritm som har namngivits reducerad akf PDA. 
  I studie av algoritmer ingår även studie av s.k. för- och efterbearbetning av data. Det har 
visat sig att en ordentlig förbearbetning gör stor skillnad på det resultat som algoritmen 
presenterar. Ett tillvägagångssätt med rekursiv bestämning av ett lågpassfilters skärfrekvens 
och rekursiv bestämning av nivån för en metod kallad centerklippning och kompression. 
  Implementationen av den framtagna algoritmen i den befintliga hårdvaran, målsystemet, 
beskrivs. En förklaring till hur målsystemets specifikationer har inverkat på valet av algoritm. 
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1. Introduction 
  The background and purpose of this project is 
presented. 

1.1 Background 
  Pitch determination is a vast area, often discussed 
in speech analysis/synthesis applications. For these, 
a number of PDA's have been developed.  
  It also has a great interest in a musical context. For 
a musician playing his natural instrument, it would 
add a new dimension, having the possibility to 
control electronic instruments. 
  This was noticed by Clavia, who gave the author 
and Leopold Roos, the mission to find a PDA that 
would be possible to include in an existing musical 
synthesis system. 

1.2 Purpose 
  The purpose of the project has been to find a 
fundamental frequency tracker with good properties 
that can be implemented in the current target 
system (ch.9).  This has been done through an 
extensive information search, studying what 
techniques are used in similar systems. 
 The different algorithms found has been simulated 
and one of the algorithms have been selected for 
implementation in the target system (9.2). 
  Throughout the report the concentration and visual 
angle has been on low computational complexity. 
This will be reflected in the discussions of the 
different pitch determination algorithms. 

1.3 Fundamental Abbreviations /  
Basic terminology 

Abbreviations: 
 
ACF - Autocorrelation Function 
PDA - Pitch Determination Algorithm 
DSP - Digital Signal Processor 
DFT - Discrete Fourier Transform 
FFT - Fast Fourier Transform 
STFT - Short Time Fourier Transform 
 Fs - The Sampling Frequency 

0F  - The True Fundamental Frequency 

0F̂  - The Estimated 0F  

0T  - The True Fundamental Period 

0̂T  - The Estimated 0T  
 
 
 
 
 

Basic Terminology: 
   
Basic Extractor - The fundamental part of the PDA. 
The block that actually performs the pitch 
detection, different from pre- and postprocessing. 
Short-Term Analysis - The method of studying a 
sampled signal segmentwise. 
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2. Theory of Musical Signals 
  Here some basic theory of musical signals is 
explained and the properties that are interesting 
when doing pitch detection are discussed. 

2.1 Properties of Music 
  Music is according to Olson [2], ‘the art of 
producing pleasing, expressive, or intelligible 
combinations of tones. Noise is any undesired 
sound.’ The later was considered true in the 50’s, 
but is not necessarily true today. What is true, is 
that noise lacks pitch. 
  A musical sound wave can be characterized by six 
physical variables: Frequency, intensity, waveform, 
duration, growth and decay, and vibrato. 
  Frequency is the number of waves per second. 
Intensity is the sound energy per unit of time 
through a unit area. Waveform is a periodic 
soundwave made up of the fundamental frequency 
and overtones. Duration is simply the length of 
time that the tone lasts. Growth and decay describes 
the amplitude variation of the tone. These 
characteristics are in general exponential functions.  
Duration, growth and decay are often replaced by 
the more common ADSR-function (Attack, Decay, 
Sustain, Release). Here attack, decay and release 
are time duration’s and sustain is a level. Vibrato 
designates primarily a frequency modulation of the 
musical tone, but is also followed by an amplitude 
modulation. Pure amplitude modulation is called 
tremolo. 

2.2 Musical Instruments 
  ‘A musical instrument is a system for producing 
one or more pleasing tones.’ That’s the beautiful 
definition by Olson [2].  
  The monophonic instrument plays only one tone at 
a time, while the polyphonic instruments can play 
several tones simultaneously. 
  The sound is generated when a resonant, or 
multiresonant system is excited by a musician. 

2.3 The Human Voice 
  The periodic sound from the human voice is 
generated at the larynx by periodic vibrations of the 
vocal cords. These are voiced sounds such as {e} 
and {a}. Unvoiced sounds such as {s} and {f} are 
noisy, non-periodic signals, created in the mouth 
cavity. 

2.4 Fundamental frequency 
  Olson [2] defines the fundamental frequency as 
‘the frequency component of the lowest frequency 
in a complex sound’. Hess [3] only makes a 

definition for voice signals: T0 is defined as the time 
between two successive laryngeal pulses. 
  Using a waveform approach, the author would like 
to define the fundamental period as: The length of 
time between two successive repetitions of the 
sound waveform. 

2.5 Formants, Harmonics, 
Subharmonics and Partials 

  A harmonic is an overtone whose frequency is an 
integral multiple of the fundamental frequency. A 
subharmonic is an integral submultiple of the 
fundamental frequency. The harmonics are 
generated along with the fundamental frequency 
when the musical instrument’s multiresonant1 
system is excited. 
  A formant is a component or a resonant frequency 
of the voice system or an instrument, that does not 
change despite a change of the pitch. An example is 
the acoustical guitar where, in better instruments, 
the lid is tuned to a certain resonance frequency [4]. 
  The fundamental frequency and its harmonics, 
produced by the musical instrument, are normally 
situated in the nearness of the formants. If the 
formants are not exactly harmonically spaced, the 
instrument is inharmonic. 
  The actual overtones produced by an instrument 
are called partials, and hence, not always situated at 
the theoretical harmonics. 

2.6 Human Hearing Mechanism 
  The human ear is the destination for all 
resynthesized music. A short description of its 
function is at place. 
  When the sound enters the ear canal, it hits the 
eardrum, which vibrates with a motion 
corresponding to the ripple of the sound wave. The 
motion of the eardrum is transported to cochlea2, 
where there are 4000 nerve fibres running to the 
brain. 
  The cochlea is frequency-selective, and is in effect 
a sound analyzer with a very fast response. It‘s 
capable of distinguishing 1500 separate frequencies 
[2]. 

                                                           
1 The resonant frequency in a first-order acoustical 
system fra and for a electrical system fre are given 
by 
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where M = inertance, CA = acoustical capacitance, 
L = inductance and CE = electrical capacitance. 
2 Cochlea - The inner ear, where the mechanical 
force is transformed into hydraulic pressure. 
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2.7 Pitch and Perception of Pitch 
  Pitch is a psychological tonal characteristic of 
music, which arise from frequency, and may assign 
to a position in a musical scale. It is subjective in 
character and can only be found by the mean results 
from a number of tests [2]. 
  The limits for pitch are given by the lowest and 
highest frequency that gives a sensation of tone, 
which is about 20 – 20000 Hz. The higher limit is 
decreased with age. 
  Pitch discrimination is the difference of pitch that 
an individual can detect. The ear is more sensitive 
to frequency changes at the higher frequencies [2]. 
  In early research, the fundamental was regarded as 
playing a dominant role in pitch perception. Hess 
[3] says that ‘recent theories and models, according 
to experimental evidence, postulate that pitch 
perception is performed by harmonic pattern 
matching. … All the spectral pitches together 
contribute to the overall pitch perception’. It is 
even so that a virtual pitch at the fundamental 
frequency can be percepted, even though the 
fundamental present in the signal is very weak. 
  PDA’s that use spectral partial analysis, can 
imitate the way pitch perception works to resolve 
the fundamental. Brown stated that her algorithm 
[5], described in 5.3.9, was consistent with the 
pattern matching theory. 
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3. Theory of Signal Processing 
  Basic signal processing and mathematical theory 
is presented to facilitate the understanding of the 
following chapters. 

3.1 Mathematical Model  
for the Signal 

  Periodic signals can be represented by the Fourier 
coefficients. For a discrete-time periodic signal 
x(n), its Fourier series representation can be 
expressed as 

∑
−

=

=
1

0

/2)(
N

k

Nknj
k ecnx π       (3.1) 

where the coefficients are given by 

∑
−

=

⋅=
1

0

/2)(1 N

n

Nknj
k enx

N
c π       (3.2) 

  A discrete-time signal with fundamental period N 
consists of frequency components separated by 
2π/N radians. Since the frequency range for 
discrete-time signals is unique in the interval 
(0,2π), the Fourier series will contain at most N 
frequency components. The N values in equation 
(3.1) and (3.2) will therefore suffice to represent the 
periodic signal having fundamental period N. 
  The expected signal sampled in this project is in 
general non-stationary, but during a short time, it 
can be restricted to being stationary or at least 
quasi- stationary. A few number of fundamental 
periods can be considered a short time (See 3.1.2). 
This holds at least for musical signals. 
  Using this, the input signal s(n) to the PDA can 
during a short time be described by x(n) above, plus 
additive noise w(n). 

)()()( nwnxns +=     (3.3) 
  The noise component w(n) is expected to contain 
white gaussian noise and rowdy elements such as 
key sounds from the instrument, breath noise and 
weak signals from interfering sound sources. 

3.1.1 Waveform 
  A waveform is a two dimensional representation 
of one period of the sound signal. It is determined 
by any setting of the coefficients in eq. (3.2). The 
waveform can have the characteristic and 
appearance of e.g. a simple sinusoidal form, or 
more complex like a triangular shape, consisting of 
an infinite number of odd Fourier series 
components. 

3.1.2 Time-Variant Systems 
  The musical signal change with time and is 
therefore time-variant, i.e. parameters such as pitch 

change with time. For short-term analysis the 
assumption is made that the parameters are constant 
or quasi-constant during a frame length K. 

3.1.3 Windowing 
  A window function (or weighting function) is a 
function that is multiplied to the signal to get a 
short-time representation. The window has 
characteristic properties within a short interval, and 
values zero outside the interval. A basic example is 
the rectangular windowing function,  
  wr(k) = 1  ; k = -K/2, …, K/2 - 1           (3.4) 
  wr(k) = 0  ; k = otherwise 
Other used window functions is e.g. the Hann 
window 
  wh(k) = 0,5 * (1 + cos (2πk/K))            (3.5) 
and Hamming window  
  wh(k) = 0,54 + 0,46 * cos (2πk/K).       (3.6) 
  Windowing signals for spectral analysis will 
distort the spectral estimate due to leakage3 and it 
reduces the spectral resolution. The effect of 
leakage can be reduced by choosing another 
window function than the rectangular. Both (3.5) 
and (3.6) have lower sidelobes in the frequency 
domain and will therefore reduce the leakage. This 
is done at the cost of a loss of resolution. 
  Windowing signals for temporal analysis has been 
shown [3], at least for the AMDF (3.2.2), to 
deteriorate pitch determination results (i.e. other 
windows than the rectangular window). A 
windowed signal is obviously, in time domain, less 
periodic than an unwindowed one. 

3.2 Short Time Signal Analysis 
Tools. Temporal Analysis 

  Functions used in temporal analysis is presented 
below. 

3.2.1 Autocorrelation 
  Correlation is a measure of similarity. The 
crosscorrelation of two sampled signals x(n) and 
y(n) is given by 

∑
−=

+
+∞→

=
N

Nn
xy knynx

NN
kr )()(

12
1lim

)(   (3.7) 

The maximum value of rxy(k) at kmax will indicate 
how much one of the signals must be shifted as to 
make x(n) and y(n) most similar. 
  The autocorrelation function (acf) is a special case 
of the crosscorrelation where the correlated signals 
are similar. 

∑
−=

+
+∞→

=
N

Nn
xx knxnx

NN
kr )()(

12
1lim

)(   (3.8) 

                                                           
3 Leakage it the phenomen that the signal power has 
"leaked out" to the entire frequency range. 
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If a stationary periodic signal is autocorrelated, the 
distance between the maximum peaks will be equal 
to the fundamental period. 
  The autocorrelation can efficiently be calculated 
using the FFT (3.3.1), using the fact that the acf is 
the inverse Fourier transform of the power 
spectrum of the signal. The power spectrum Sxx(f) is 
also calculated using the Fourier transform. (X(f) is 
the Fourier transform of the signal x(n)). 

∑
−

=
2/1

2/1

2)()( dfefSkr fnj
xxxx

π    (3.9) 

2)()( fXfS xx =    (3.10) 

3.2.2 AMDF 
  Like autocorrelation, the AMDF (Average 
Magnitude Difference Function) is also a measure 
of similarity and periodicity. The function is 
expected to have strong minimum when the shifting 
variable k in 3.11 becomes equal to the period T0 of 
a quasiperiodic signal x(n) of length K. 
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The minimum would be zero in case the input 
signal x(n) was exactly periodic. 

3.2.3 ASDF 
  The ASDF (Average Squared Difference 
Function), can be defined 
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3.3 Short Time Signal Analysis 
Tools. Spectral Analysis 

  Functions used in spectral analysis are considered 
here. 

3.3.1 DFT and FFT 
  The discrete Fourier transform (DFT), defined in 
3.13, plays an important role in many applications 
of digital signal processing, including linear 
filtering, correlation analysis and spectrum analysis. 

∑
∞

−∞=

−=
n

fnjenxfX π2)()(                         (3.13) 

  In practice, the spectrum can only be 
approximated from a finite data record. This finite 
observation interval puts a limit on the frequency 
resolution, the ability to distinguish two frequency 
components, to fres = 1 / LTs, where L is the number 
of samples in the DFT and Ts is the sampling 
period. 

  An important reason for the great use of DFT is 
the existence of efficient methods to calculate it. 
Often used fast Fourier transform (FFT) algorithms 
are radix-2 and radix-4 FFT algorithms where the 
number of data in the FFT is of power 2 or power 4 
respectively. 

3.3.2 DSTFT 
  The DSTFT (Discrete Short-Time Fourier 
Transform) is the Fourier transform used on a 
single frame of length N. Most often the length N is 
set so that the signal is approximately stationary 
throughout the whole window. 
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3.3.3 The Constant Q Transform 
  The constant Q transform is based on transforming 
the Fourier transform into log frequency domain. 
This is useful, since the tones of the western 
musical scale are geometrically spaced. Constant Q 
refers to constant frequency to resolution,  
Q = f / df. Method: 
1. Choose minimal frequency f0 and the number 

of bins per octave b. Let fmax be the maximal 
frequency. 

2. 
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3.3.4 Multiple Spectral Transform, 
Cepstrum 

  The Cepstrum has been used  to separate the 
spectral content from the pitch frequency of speech. 
It’s calculated in three steps: 
1. Analyzing the signal x(n), calculate its DFT 

)/2( Nkjex π  

2. Calculate its logarithm )/2(log Nkjex π . 

3. Calculate the inverse DFT, resulting in cp(n). 

3.3.5 Wavelets 
  There are many variations to the wavelet 
transform, only mentioned here is the orthogonal 
wavelet, which is the one that have been used in 
PDA’s. 
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  The study of wavelets is the study of bases 
spanning the signal space, which have the property 
that all basis functions are self-similar, which 
means that they only differ by translation and 
change of scale from one another. 
  In [6] a wavelet is visualized as a damped sine 
wave whose amplitude is very small, perhaps zero, 
outside some bounded interval, and which is 
distorted some in its shape to guarantee the 
orthogonality conditions to hold. 
  The discrete wavelet transform is based on 
sampled two-channel perfect reconstruction 
filterbanks with halfband highpass and halfband 
lowpass branches. If the transform is iteratively 
applied to its lowpass branch, it is in each iteration 
additionally scaled. Figure 3.a describes the scheme 
for a multi-scale wavelet transform (here 2-scale).  
 

 
 
figure 3.a) The discrete wavelet transform 
 
  Here, g(n) is a highpass halfband wavelet filter 
and h(n) is the complementary lowpass wavelet 
filter. The output of h(n) is the lowpass residue for 
the level x filter branch. The highpass subband for 
the g(n) branch, represented by Level x DWT 
Coeffs., is called the wavelet function. The result 
after desired number of iterations is then a coarse 
estimate of the original signal in the lowpass 
branch. The outputs of g(n) consists of successively 
finer details of the highpass channels. B is the 
bandwidth at each level. 
  The original signal can be perfectly reconstructed 
by inverse-filtering through the filterbank. 
  In summary, the wavelet analysis filterbank, 
derives the coefficients for the linear expansion of 
the signal with respect to the basis functions 
corresponding to the impulse responses of the 
synthesis filterbank. For an introduction to wavelet 
transforms, [7] is a nice resource. 

3.4 Digital Filters 
  Any device that converts an input signal x(n) to an 
output signal y(n) is a digital filter. But discussed 
here, are the linear digital filters having a transfer 
function H(ω) that defines an analytical relation 
between the Fourier transforms of the input- and 
output signal, ).(/)()( ωωω XYH =  

3.4.1 FIR and IIR Filters 
  The low-, band- and highpass filters discussed in 
this report are of either finite or infinite impulse 
response type (FIR or IIR). If there is a requirement 
of linear-phase characteristics, FIR filters are most 
often used. If phase distortion is tolerable or 
unimportant a IIR filter is used, since its 
implementation involves fewer parameters, less 
memory and has lower computational complexity. 
A filter can be described by the difference equation 
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where the frequency response mentioned above is 
given by 
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For the FIR filter, {ak } = 0. 

3.4.2 Resonance Filter 

  The digital resonator is a two-pole filter with the 
pair of complex conjugate poles located near the 
unit circle. The magnitude of the frequency 
response is large (it resonates) in the vicinity of the 
pole location. The zeros can be located in the origin 
or commonly at z = 1 and z = -1. The later will set 
the response to zero at frequencies ω = 0 and  
ω = π. 

3.4.3 Comb filtering 
Taking a FIR filter with system function 

∑
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)()(                          (3.17) 

and replacing z by zL, where L is a positive integer, 
results in the new FIR filter 
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If the frequency response of the original filter is 
H(ω), the frequency response of 3.18 will be 
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Thus, the frequency response of HL(ω) is an L-
order repetition of H(ω) in the range πω 20 ≤≤ . 

3.5 Analog to Digital Conversion 
(Sampling) 

  If the highest frequency contained in an analog 
signal x(t) is fMAX, and sampled at a rate FS > 
2*fMAX, then the signal x(t) can be exactly recovered 
from its sample values using the sinc interpolation 
function 

tf
tftg

MAX

MAX

π
π

2
2sin)( =                          (3.20) 

  The sampling rate FS = 2*fMAX  is called the 
Nyquist rate. 
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4. Introduction to the science 
of Pitch Determination 

  Pitch determination is equivalent to fundamental 
frequency estimation, while pitch perception is 
connected to the subjective understanding by the 
human being (2.7). 
  Pitch analysis is often linked to a resynthesis step, 
as when used in voice coding. Thus, it normally has 
not only a analysing purpose, but is also followed 
by a system where the result in practical will be 
applied. 
  This subsequent system is then the director for 
what results the pitch determining system must 
achieve, e.g. what measuring range the system must 
handle and the necessary resolution. 

4.1 History of Pitch Determination 
  The oldest techniques for pitch determination are 
auditory and manual pitch determination systems. 
The auditory system simply consists of the human 
ear and the brain, where the limit according to Hess 
[3], is the human mind. This is because the mind is 
unable to follow fast short-term variations of the 
pitch in a signal such as the voice. However, when 
there is a stationary behaviour, as in musical 
signals, the auditory pitch determination system 
performs better. The ability of a person to 
quantitatively determine the fundamental of a 
periodic sound without a known reference is called 
absolute pitch. 
  Time-domain manual pitch determination, simply 
means determining the pitch from a visual display 
of the signal. The first frequency-domain manual 
pitch determination, became possible with the first 
mechanical spectrograph in 1946 [3].  
  Most studies on pitch determination, has been 
made for voice signals. The goal has been to 
improve voice coding algorithms used in tele 
communications. Determining musical pitch for 
technical devices became more interesting with the 
introduction of the MIDI – standard4. Pitch-to-
MIDI converters are by musicians well-known 
devices . 

4.2 Pitch Determination for Speech 
vs. Pitch Determination for 
music 

  Fundamental frequency estimators for speech do 
not in general assume the strong harmonic structure 
that is present in a musical signal. The speech 
algorithms also operate in a much narrower 
                                                           
4 The MIDI standard was introduced in Los 
Angeles 1983 [8], as a communication protocol for 
musical instruments. 

frequency range. Furthermore, the demand for a 
fast response time is more important in a musical 
context. 

4.3 Online vs. Offline / Realtime vs. 
not Realtime 

  An attempt to distinguish online processing versus 
realtime processing is proposed by Hess [3]. 
Realtime processing is said to take place, when the 
calculation of pitch for a signal segment takes less 
time than the segment itself. Online processing 
occurs when a result is presented in one step, 
without needing a considerable amount of future 
data. A PDA is said to be instantaneous when it 
operates both online and in realtime. 

4.4 Properties of a PDA 
  A PDA used for musical signals should preferably 
cover a huge fundamental frequency range. An 
electric bass having the lower string tuned to H0, 
corresponds to 30,9 Hz. An acoustical piano could 
be expected to have tones played up to C7, 
corresponding to 3951,1 Hz. In other words, the 
measuring interval can at least be restricted to  
30 - 4000 Hz. 
  Reducing the measuring interval will most often 
improve the performance of the PDA. According to 
H.F.Olson [2], the following fundamental 
frequency ranges can be expected: 
• Singing Voice  : 80 – 1000 Hz 
• Piano   : 30 – 5000 Hz 
• Saxophone  : 50 – 1500 Hz 
• Trumpet  : 150 – 1000 Hz 
• Flute  : 300 – 3000 Hz 
• Acoustic Guitar : 70 – 700 Hz 
  These values are only approximates, and a singing 
voice can, e.g. when singing a piece by Mozart, 
demand a range of 50 – 1800 Hz [3].  
 
  The resolution, or measurement accuracy needed, 
is definitely all depending of what the pitch 
estimate will be used for in the subsequent system. 
However, for musical applications one must assume 
that an upper bound, should be set by half the 
distance between two adjacent semitones. This 
approximately corresponds to a relative difference 
of  2,5 % in Hz. In Hess [3], it’s been concluded 
that for "perfect pitch determination", an accuracy 
of 0,3 % to 0,5 % is needed. 
  Response time is crucial for demanding musicians. 
Delays of 30 ms are very noticeable. Depending on 
the PDA, the response time is either fixed, or within 
an interval. A response time of 5 ms is by the 
author considered desirable, but also extremely fast. 
A frequency of 30 Hz corresponds to a fundamental 
period of 33 ms. A fundamental period of 5 ms 
corresponds to a fundamental frequency of 200 Hz. 
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The contradiction of low frequency range and fast 
response time is clear. A fast response time is also 
hindered by the fact that during the attack of a new 
tone, pitch determination is most difficult (4.5). 

4.5 Typical difficulties in a sound 
signal for pitch Determination 

  In general, when talking of signals having a 
fundamental frequency, one normally assumes 
there are formants present, and it is no longer 
possible to speak of the signal as being simple. 
 

 

 
figure 4.a)  A piano tone and its spectrogram. 
 
  As mentioned in the preceding section, the nature 
of the signal makes the fast response demand a 
tedious task. In figure 4.a, the signal of a tone 
played from a sampled acoustical piano is plotted 
along with its spectrogram.  
  At the attack, not only the fundamental at the 
normalized frequency 0.2 is present, but almost the 
whole spectrum. As the tone diminishes, the 
fundamental and its harmonics are made clear.  

 

 
figure 4.b)  A El.Bass tone with weak fundamental 
 
  The presence of higher harmonics is the main 
reason for pitch detection errors and it often results 
in octave detection errors. As can be seen in figure 
4.b, the fundamental can sometimes be so weak that 
it’s hard to tell if it’s present at all. Here, the third 
harmonic is very strong and PDA’s will have 
problems to separate this frequency from the 
fundamental frequency. 
  In played music, one note is after a changeover 
followed by another. During this transition both 
tones may be present and that makes pitch 
determination during attacks even harder. Two 
tones being played simultaneously, as at transitions, 
are said to be duophonic. 
  Furthermore, an obstacle is that a musical sound is 
non-stationary and may have a new appearance 
from period to period (3.1.2).  
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5. Algorithms, Theory and 
Evaluation 

  A discussion of the pitch determining algorithms 
that have been found in an extensive literature 
search are discussed. 

5.1 How the algorithms are grouped 
  The algorithms described below are grouped in 
time domain PDA’s, spectral domain PDA’s, 
combined PDA’s and other PDA’s. 
  The classification of algorithms is difficult, since 
some algorithms use calculations having results that 
are valid for both temporal and spectral domain, 
e.g. AR-modeling of a signal. A common 
classification is time-domain and short-term PDA’s 
[3]. However, classifying algorithms into time and 
spectral domain is to the author an intuitive 
approach. 
  Also, the algorithms are discussed as complete 
pitch determination algorithms more than basic 
extractors. This is because the simulations have 
been performed on complete algorithms. A basic 
extractor is here considered a fundamental function, 
and not being subject to dissection. As the 
algorithms are described, it will be clear which 
basic extractor has been used.  

5.2 Time Domain PDA 
  In this section the PDA’s that operate in time-
domain, i.e. directly on the sampled data, are 
discussed. 

5.2.1 Common features 
  Pitch tracking in time domain is by some seen as 
an old-fashioned method. When the techniques of 
doing transforms to other domains were developed, 
it was considered as if the answer to all musical 
signal processing problems would be solved there. 
  Still, for a problem such as pitch tracking, it is not 
crystal clear that frequency domain operations 
always are superior. 
  The benefit of studying the signal in time domain 
for pitch tracking, is that the analysis can be 
performed at sample basis instead of at buffered 
intervals. No transformation is needed, which is an 
advantage if the algorithm is restricted by 
computational load. Also, in almost all situations it 
is possible to know the fundamental period of a 
signal in time domain, just by studying it with the 
human eye. If algorithms are made that are so 
intelligent, time domain will do. 

5.2.2 Common drawbacks 
  When there are strong harmonics in the signal and 
the fundamental is weak or even missing, classical 
time-domain functions such as peak-picking or the 
envelope follower will have a tedious task. There is 
no way of easily extracting the formant structure 
and benefiting this, as there could be in spectral 
domain. 
  A DC – offset will for some time domain 
algorithms render the result useless. This could of 
course be solved by high pass filtering. 

5.2.3 PDA: LP and Threshold 
Crossing Analysis 

  The most elementary extractor of periodicity has 
since the first days of pitch determination been the 
study of polarity changes of a signal. This 
technique is generally referred to as zero crossing 
analysis, since the change of polarity in time 
domain is described by the signal curve as crossing 
the abscissa. Having undistorted simple signals like 
e.g. a sinusoidal signal, this basic extractor will be 
enough to find the period. The period time is then, 
the time distance between two subsequent positive 
zero crossings, where a positive zero crossing is 
defined as a change from negative to positive 
polarity. However, musical signals can not be 
generalized as having simple properties, and 
therefor this technique will undoubtedly fail. 
  A generalisation of the discussion above about 
having the signal cross the abscissa, would be to let 
the signal cross a threshold where its level is 
arbitrary set somewhere along the ordinate. The 
technique would then not only be restricted to being 
called zero crossing analysis, but instead threshold 
crossing analysis. Putting the threshold at precisely 
the correct level, the performance would be 
improved to handle more complicated waveforms 
as described in figure 5.a. Of course, since we are, 
as explained in 3.1.2, processing time-variant 
signals, it is impossible to know where to put the 
threshold level correctly. 
  This extractor is like practically all other 
extractors preprocessed by a lowpass filter. 
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figure 5.a) Single Threshold Crossing Analysis 

5.2.4 PDA: Two Non-zero Threshold 
Crossing with Hysteresis 

  From the approach described in 5.2.3, one could 
improve the performance by adding a second 
threshold. This second threshold would then be put 
at a negative level corresponding to the rate of the 
positive threshold or simply at zero level. The gain 
introduced by a second threshold is that each 
individual threshold can be crossed an infinite 
number of times, but only when the two thresholds 
are crossed successively in a defined sequence, an 
indication for a start of a new period is set. (figure 
5.b) The method is said to have hysteresis 
behaviour, since it is a non-linear input-output 
system with memory. 
 

 
figure 5.b) Two Threshold Crossing Analysis 

5.2.5 PDA: Simple Envelope follower 
  In 1954, Ladislav O. Dolansky presented a paper 
with the headline: “An Instantaneous Pitch-Period 
Indicator” [9]. This was the introduction of an 
algorithm that have had a grand influence of all 
pitch determination since then. Though introduced 
in analogue electronics, the technique is still used in 
today’s digital environment. 
  The basic extractor used in this method is said to 
be a “simple envelope follower”. Figure 5.c 

describes pretty well the function. The pitch period 
can be derived from the envelope by setting marks 
where the signal exceeds the envelope. 
Alternatively a peak finder will indicate period. A 
third way would be to use the zero crossings of the 
signal following a discontinuity of the envelope 
follower. 
 
 

 
Figure 5.c) Envelope follower with periodicity cues 
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5.2.6 PDA: Extended  
Envelope follower 

  The result from one simple envelope follower can 
be improved by adding another envelope follower 
to another. But there in between, a first-order 
highpass filter is put. Filtering the envelope signal 
will have the result displayed in figure 5.d. 
Dolansky5 made a circuit that repeated this 
procedure six times, ideally resulting in an output 
signal consisting of positive pulses at the beginning 
of each fundamental period. 
  The envelope follower is not restricted to being 
used only on the positive part of the signal. Another 
one could simultaneously be following the negative 
side. The problem arise then of knowing which of 
the two results to choose. J. Engdegård [10] 
implemented a system using cascade linked 
envelope followers at both positive and negative 
amplitudes. Each of the positive and negative 
curves resulted in individual pitch estimates. The 
decision of selecting the positive or negative results 
were solved by selecting the one having the 
smallest variance a number of estimates back. 
 

 
figure 5.d) Highpass filtered envelope 

5.2.7 PDA: Peak Detector by Reddy 
  An early method using peaks of the sound signal 
as cues for calculating the fundamental period, is 
the algorithm made by Reddy in 1966. The method 
includes a simple basic extractor as well as a global 
correction routine. The global correction routine is 
discussed in 8.1. The basic extractor is typical for 
how peak detecting algorithms can be designed. 

                                                           
5 Dolansky’s paper is discussed in section 5.2.5. 

  Small blocks of the signal, about 25 ms, are 
examined in each cycle of the algorithm. All local 
maxima and minima in this block are determined. 
After that the algorithm determines “significant” 
maxima from the local maxima following the 
rules6: 
The peak 
- is positive 
- does not occur within 2,5 ms from the 

previous significant maximum 
- is 

a) either greater than 0,9 times the absolute 
minimum 
b) greater than the linearly extrapolated value 
from the previous two significant maximum 
peaks 
or 
c) if neither a) nor b) is satisfied within 13,5 
ms of speech from the previous significant 
maximum, then the maximum of all the local 
maxima in that 13,5 ms of speech 

A significant minimum is defined similarly. The 
limitations in time (2,5 ms and 13,5 ms) would 
according to Hess [3] indicate a range of the 
fundamental frequency from 75 Hz to 400 Hz. 
Finally, a significant peak is defined as a 
significant max having a significant min within 3,5 
ms of its occurrence. The significant peaks are 
further refined in the global correction algorithm, 
before being calculated into pitch estimates. 
  This algorithm is instructive as an example for 
how rules (8.7) can be used for improving the 
performance of a PDA. 

5.2.8 PDA: Rabiner and Gold 
  Like Reddy’s algorithm in 5.2.7, the PDA by 
Rabiner and Gold (1969) explore the structure of 
the waveform directly in the time domain. This 
algorithm has become very well known and has 
often been cited and referred to when analysing 
other algorithms. Figure 5.e. explains what 
characteristics of the waveform are examined. 
 

 
figure 5.e) The peak values M1 – M6 
 
                                                           
6 The algorithm is reproduced as it was summarized 
by Hess [3]. 
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  The six individual peak values M1-M6 are 
separately examined in a simple envelope-
following like extractor. That way six different 
proposals for the pitch period are deduced from 
these six independent envelope followers. The six 
period values are put in a matrix according to figure 
5f. Each of the elements in the first row is 
compared to the other 35 elements. The element 
having the most coincidences7 is chosen as the 
fundamental frequency. 

          
Period Matrix     

T11 T21 T31 T41 T51 T61 
T12 T22 T32 T42 T52 T62 
T13 T23 T33 T43 T53 T63 
T14 T24 T34 T44 T54 T64 
T15 T25 T35 T45 T55 T65 
T16 T26 T36 T46 T56 T66 

 
figure 5.f) The periods Ti1  to Ti6  are the period 
values corresponding to extractor i (with 
characteristic value Mi. The most recent period is 
Ti1  and Ti2 and Ti3  are past values. Ti4  to Ti6  are  
calculated according to the figure. 

5.2.9 PDA: Simple PDA with filterbank 
preprocessing 

  An approach where the input signal has been 
separated into different channels through a 
bandpass filterbank has been examined. The 
filterbank are set with geometrically spaced center 
frequencies so that each filter corresponds to one 
musical octave. Each output has been linked to a 
basic extractor, and the result is chosen from the 
filter containing most energy.  
  The use of filterbanks can be compared to the 
discrete wavelet transformation approach in 5.3.11. 

5.2.10 PDA: eSFRD 
  Enhanced super resolution F0 determinator [11]. 
The algorithm was developed by Bagshaw (1994) 
and is a modified and improved version of an 

                                                           
7 A coincidence is given when the absolute 
difference between the elements under 
consideration is less than a given threshold. 

algorithm SFRD, by Medan, Yair & Chazan 
(1991). 
  The method analyses the signal frame wise. The 
largest amount of samples needed for each frame 
will be decided by the frequency interval where the 
fundamental is looked for, say [fmin, fmax]. The 
number of samples needed will then be  
Nmax = Fs / fmin , resulting in a frame length of 3Nmax 
since the frame is defined as:  

sN = { s(i) | i ∈[-Nmax, 2Nmax] }.  
Each frame is divided into three consecutive 
sequences each having a variable length n. The 
three sequences are defined as:  

xn = { x(i) = s(i-n) | i ∈1,…,n } 
yn = { y(i) = s(i) | i ∈1,…,n } 
zn = { z(i) = s(i+n) | i ∈1,…,n } 

  A value for n is looked for, such that each segment 
xn , yn  and zn will contain the fundamental period. 
By calculating a normalized cross correlation 
coefficient (5.1) for each n in the interval  
[Nmin, Nmax], candidates for the fundamental period 
will be taken as the local maxima exceeding a 
threshold level8. The same calculations as for ρx,y(n) 
will be calculated for ρy,z(n). Candidates appearing 
in both calculations are given 2 points, and the 
other candidates will be given 1 point. The winning 
candidates are further compared in a normalized 
cross correlation (5.2). These remaining candidates 
nm, are listed in order of size of the fundamental 
period with n1 as the shortest period and nM the 
longest period. The greatest value of (5.2) will 
settle the winning period estimate. 
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5.2.11 PDA: Pisarenko method and 
Yule-Walker method 

  Non-parametric methods for estimating the power 
spectrum make no assumption for how the analysed 
data is generated. Moreover, they are relatively 
simple and easy to compute using the FFT 
algorithm. In the search for a PDA that does not 
                                                           
8 The threshold level is chosen empirically. 
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assume anything of the source signal this approach 
is superior. However, the drawback of these 
methods are that they need a long data record in 
order to obtain the necessary frequency resolution 
required. Furthermore, the methods suffer from 
spectral leakage effects due to windowing. 
  Contrary to the non-parametric methods, the 
parametric methods models the received data 
sequence as the output of a linear system 
characterized by a rational system function having 
corresponding difference equation 

)()()(
01

knwbknxanx
q

k
k

p

k
k −+−−= ∑∑

==

  (5.3) 

where w(n) is the input sequence to the system and 
the observed data x(n) represents the output 
sequence. It is convenient to assume the input 
sequence w(n) as zero-mean white noise. The 
power spectrum of our observed data will then be 
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where σw
2 is the variance of w(n). The model-based 

approach thus consists of two steps. First estimate 
the parameters {ak} and {bk} of the model. Then 
compute the power spectrum according to (5.4). 
[12] 
  A random process generated by a pole-zero 
transfer function is called an autoregressive-moving 
average (ARMA) process. If the parameters {bk} is 
of order zero (q = 0 in (5.3)), The system is called 
an AR process. The AR model is widely used for 
two reasons. The AR model is suitable for 
representing spectra with narrow peaks 
(resonances). Moreover, the AR model results in 
very simple linear equations for the AR parameters. 
  The Yule-Walker method estimates the 
autocorrelation rxx(n) from the observed data and is 
used in the normal equations (5.5) to obtain the  
AR-model parameters. That is, the true correlation 
values γxx(n) are replaced by the estimates rxx(n). 
The power spectrum is then calculated in (5.4). 
 

 
 
 
 (5.5) 
 
 
 

 
The Pisarenko Harmonic Decomposition method is 
a method using eigenanalysis for estimating the 
spectrum. It is assumed that the spectrum consists 
of a number of sinusoids in white additive noise. In 
short, the method proceeds as follows. From the 

data, the autocorrelation matrix is formed9. The 
minimum eigenvalue is found and the 
corresponding eigenvector reveals the parameters 
of the ARMA model. The frequency of the sinusoids 
are determined by the roots of A(z) in 5.6. 
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  Xiao and Tadokoro [13] compared in 1994 the 
Pisarenko and the Constrained Yule-Walker 
(CYW) estimators. To their knowledge, such a 
simple and intuitive derivation as theirs of the 
CYW, had not yet appeared in the literature. The 
two frequency estimators used by Xiao/Tadokoro 
are derived as follows. 
The problem statement is set to consider a single 
sinusoid in noise: 

NttetAty ,...,2,1),()sin()( =++= ϕω          (5.7) 
where ω ∈  (0,π), the initial phase φ is uniformly 
distributed [0,2π), e(t) is white gaussian noise 
sample sequence with zero mean and variance σ2.  
N is the number of observed data. 
The autocorrelation for y(t) at time k is 
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An estimator for the frequency is derived if eq. 
(5.7) is assumed stationary during two time 
samples. Results from equation (5.8) will then 
reveal: 
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which will result in the estimator 
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This is the result from the one-sinusoid model of 
the Pisarenko Harmonic Decomposition. The 
general result can be derived from (5.6). 
If one to (5.9) also add the assumption of 
stationarity through a third time sample and uses 
the equations for r3 as well, it will lead to a second 
frequency estimator 
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This estimator can be obtained by using the first 
equation for of the Yule-Walker equation set for a 
sinusoid in noise. Xiao/Tadokoro leaves it an open 

                                                           
9 The autocorrelation matrix is formed in the same 
way as the matrix on the left in (5.5).  
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question whether or not the same derivation method 
can be extended to the multiple sinusoidal case. 

5.2.12 PDA: LPC Analysis 
  Linear Predictive Coding, LPC, declares that a 
signal sample x(n), is predictable from previous 
samples, except for an additive error signal, the 
LPC residual e(n). 

)()()2()1()( 21 neknxanxanxanx k +−+−+−=  
The filter coefficients ai can be seen as a digital 
filter that can be calculated using the normal 
equations mentioned in 5.2.11. LPC analysis can 
according to [3] be seen as a method for short-time 
spectrum estimation and the residual signal will 
have a much flatter spectrum than the original 
signal x(n). LPC analysis could therefore serve as 
an efficient preprocessing technique. 

5.2.13 PDA: Adapting 2 pole notch 
filter with RLS or LMS 

   In this section an adaptive filtering approach is 
taken, where the pitch is calculated from the filter 
coefficients. Assuming the observed signal can be 
described as x(n) = sin(2π(f/Fs)n), then the filter  
A(q) = 1 – 2cos(2π(f/Fs))q-1 + q-2 will give  
A(q)x(n) = 0.10 This is a notch filter. By observing 
the input signal x(n) and building an adaptive 
estimate of the desired notch filter coefficients,  
A = [1,a1, a2], the filter coefficients will give an 
estimate of the angular frequency 2πf/Fs for x(n). If 
the filter coefficient a2 is close to one, then  
arccos(-a1/2) will be a good estimate for f. 
Otherwise the angular frequency can be estimated 
from the argument of one of the roots to A(z), since 
ideally the roots should be z = e(±j2πf/Fs) [14]. 
  The methods used in 5.2.11 are examples of off-
line estimation of the AR-model parameters. That is 
when a whole batch of N data samples  
Y(n) = [y(n),…,y(n-N+1)] is available, and 
processed right away. Estimating the parameters in 
a recursive manner is called on-line estimation. In 
this case the estimate of the system parameters are 
updated every sample.  
The AR system can be written as 

    
(5.12) 
 

where e(n) is zero mean white noise and  
θ = {a1,…,aN) are the unknown system parameters. 
Introducing ϕ(n) = [-y(n-1), -y(n-2), …, -y(n-N)]T, 
the system can be rewritten as 

)()()( nenny T += θϕ                       (5.13) 

                                                           
10 The q shift operator behave as q x(n) = x(n+1)  
and q-1 x(n) = x(n-1). 

A one-step ahead predictor of the value is formed11 
θϕθ )(),1|(ˆ nnny T=−                       (5.14) 

We’re not really interested in the one-step ahead 
predicting, but what we use is the fact that the 
predictor algorithms will also deliver an estimate 
for the system parameters. The Least Mean Square 
(LMS)-algorithm that serves as a one-step ahead 
predictor and system estimator is given by 
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where µ is the step size found empirically. 
The stability of the LMS algorithm is dependent on 
the signal power of y (variance σy

2) which of course 
vary, this will make the selection of the step size 
unnecessarily small. By using a normalized step 
size (5.16) the algorithm is made insensitive to the 
signal power. This is the normalized LMS. 
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where c is a positive constant and for stability  
0 < µ < 2. 
  The recursive least squares (RLS) algorithm (5.17) 
is a method using a more sophisticated numerical 
optimisation procedure. It has faster convergence 
than the LMS and is less noise sensitive. 
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where λ is called the forgetting and set empirically. 
The step size µ in the LMS algorithm equates 1-λ 
in RLS. 

5.2.14 PDA: Autocorrelation 
  The autocorrelation function (acf) PDA’s are 
popular and widely used. It is a short-term analysis 
method and the most intuitive one following that 
formula. The principle is simple and the theory is 
discussed in 3.2.1 in greater detail. The benefits of 
the autocorrelating PDA’s are that they can be 
designed and implemented in a countless number of 
manners. They are easily modified for different 
measuring ranges, resolution and desired response 
time characteristics. Best of all is that the acf PDA 
                                                           
11 Given n-1 values of y and θ, the one-step ahead 
predictor computes a guess of the next value of y. It 
can be shown that this is the optimal one-step ahead 
predictor when e(n) is zero-mean. 
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does not require the presence of the fundamental 
harmonic. 
  The ordinary12 acf PDA though has some 
shortcomings. A distinct formant structure is 
maintained in the acf, and notorious errors such as 
higher harmonic or subharmonic detection will 
occur. The conclusion that has been made is that 
acf PDA’s need some sophisticated preprocessing 
to reduce the influence of the formants, especially 
from the first formant. Spectral flattening is done 
with methods involving non-linear or linear 
operations, e.g. through center clipping and 
filtering. (See Ch. 7) If the acf is calculated using 
discrete Fourier Transform, spectral flattening can 
be done in frequency domain. 

5.2.15 PDA: AMDF 
  The AMDF function is described in 3.2.2. It is 
calculated as the agreement of the signal at a certain 
distance and could be seen as a cheap alternative to 
the acf. No multiplication’s are needed13. There are 
other comparable “distance” comparing functions 
but the AMDF is the most used. The method can be 
realized in a similar fashion as the acf PDF, i.e. 
through a short-term analysis. 
  The method is phase-insensitive, since the 
harmonics are removed without regard to their 
phase. Unfortunately the function is sensitive to 
intensity variations and noise. 
  The function has sometimes been used as a refiner 
as to calculate the pitch in the vicinity of a crude 
estimate of the pitch. 

5.2.16 PDA: Maximum-Likelihood 
  Maximum-likelihood (ML) pitch determination, in 
some literature called least-squares pitch 
determination, assumes nothing about the signal 
observed over K samples, except that it consists of 
a noise component w(n) and a periodic component 
x(n) (with a period less than K). 

1,...,0)()()( −=+= Knnwnxna          (5.18) 
  The job for the ML algorithm is to mathematically 
reconstrunct x(n) and w(n). This is done by finding 
an estimate ),(ˆ pnx that is most likely to represent 
the original wave x(n). The estimate is found by 
maximising its energy as a function of the trial 
period p. 

                                                           
12 By ordinary Rabiner in 1977 meant that the 
incoming signal is more or less unprocessed except 
for some lowpass filtering. 
13 In the target system this does not reduce the 
complexity. One multiplication or one subtraction 
can be done in one processor cycle. 
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  The first term in (5.19) [3] is the energy of the 
signal within the frame and the second term is the 
energy of the periodic estimate. The problem is to 
minimize the variance of the noise σ2, which is 
done when the energy of the periodic component, 
depending on the trial period p, becomes a 
maximum. For a given period p, the signal estimate 
is given by (5.20) [3]. P is the number of complete 
periods contained in the interval n = 0,…,K-1. 
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5.2.17 PDA: On-Line LS-fit 
  As described in section 3.1, any periodic signal 
can, as presented in the theory of Fourier series, be 
represented by a signal consisting of many 
sinusoidal components.  
  Händel and Tichavsky [15] has designed an 
algorithm that uses an adaptive comb filter based 
on discounted least squares (LS) identification of a 
harmonic signal combined with estimation of 
frequencies from phase differences.14 
  The signal plus noise signal is parameterized in a 
state space model. To the LS criterion, which is set 
up, a forgetting factor λ < 1 is introduced. This is 
according to Händel/Tichavsky [15] a frequently 
used modification in on-line applications in order to 
track time-varying parameters. 

5.2.18 PDA: Cooper and Ng 
  D. Cooper and K.C. Ng introduced an algorithm in 
1994 [1]. The input signal is analysed and separated 
into segments, where each segment starts and ends 
at two consecutive positive zero crossings (as 
defined in 5.2.3). 

 
figure 5g) Two segments and characteristic values 
 

                                                           
14 This approach has revealed accurate performance 
and low-cost update schemes according to [8]. 
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  As depicted in figure 5g, each of these segments 
are divided into eight subsegments. The first three 
and the last three amplitude values of these 
subsegments form the landmarks for the current 
segment. The segment with the largest segment is 
then compared to all the others, calculating a 
similarity ratio using a normalized distance 
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  The two segments to be selected as similar, must 
fulfil the following: 
• The difference in length of the two segments 

must be less than a defined threshold. 
• The similarity-ratio should be high.15 
• The similar segment should be as near to the 

largest segment as possible. 
  The fundamental period is finally calculated as the 
distance between the two similar segments. 

5.2.19 PDA: The Reduced ACF 
  An approach similar to the Cooper and Ng method 
in 5.2.18 has been developed16. The advantages of 
that method, such as being cheap in computations 
in relation to the results, made the approach look 
promising. The main idea from Cooper and Ng, is 
to use the signal’s zero crossings as cues for a 
calculation, where only a few signal characteristics 
are used when calculating the correlation. 
  As in 5.2.18, one segment is extracted between 
two positive zero crossings. The characteristical 
values are chosen as the segments maximum and 
minimum values and the segment length. The 
intersegment similarities are calculated according to 
equation (5.21). 
  A reference segment is picked as the maximum 
valued segment in the eight most recent segments. 
This segment is correlated to the others using the 
similarity calculation. A segment with a similarity 
exceeding a certain threshold, that is most adjacent 
to the reference segment, will be chosen for the 
distance corresponding  to the fundamental period. 
  The accuracy is improved if two reference 
segments are used, suggested is the maximum 
segment and also the segment having the biggest 
minimum. A fundamental period estimate is 
calculated from the two reference segments, and a 
                                                           
15 Cooper and Ng set this threshold to 0.75. 
16 The development of this algorithm was done by 
Leopold Roos and Stefan Uppgård during this 
project. The name ‘Reduced ACF’ asserts that the 
proposed method is cheaper in computations than 
the ordinary ACF. 

resulting period estimate is valid if the two 
estimates don't differ more than a certain value. 
  This PDA is proposed to use a recursive setting of 
the cut-off frequency for a LP filter and a 
recursively set center-clip and compression value. 
  The development and theory of the algorithm is 
further described in a later section (9.3). 

5.3 Spectral Domain PDA 
  In this section the algorithms that operate in the 
frequency domain are discussed. 

5.3.1 Common features 
  The frequency domain algorithms are in general 
dependent of a transformation from time to spectral 
domain, and therefore fairly demanding in terms of 
computational quantity. The FFT can of course be 
implemented quite effectively in today’s digital 
signal processors. 
  In contrast to time domain PDA’s, downsampling 
the signal does not decrease the accuracy of 
frequency domain PDA’s. 
  Intuitively, pitch tracking should be done in the 
frequency domain, since it gives superior control of 
where the energy of the formants are situated. Not 
only the fundamental is then of interest but one can 
explore the relationship of harmonic spectral peaks. 

5.3.2 Common drawbacks 
  A problem with the spectral PDA is that a simple 
study of the spectrum, e.g. the maximum resulting 
from the FFT, is not enough for determining the 
fundamental period. A simple spectrum peak picker 
will be erroneous since formants in musical signals 
will increase the magnitude of higher harmonics. 
Extra processing such as transformation to 
Cepstrum or some bright harmonic analysis of the 
spectral peak distribution is needed. 
  Another obstacle is that a normal DFT separates 
the bandwidth into equally spaced frequency bins. 
However, as discussed in 2.7 the relationship 
between pitch perception and frequency is 
logarithmic. This could be solved by using a 
constant-Q transform (5.3.7), which on the other 
hand lead to a considerable amount of calculations 
for the lower frequency parts. 

5.3.3 PDA: FFT, Maximum of FFT, 
Division method 

  Transforming data to spectral domain is done in a 
short-term analysis manner. When using the DFT 
this way, it is usually referred to as the STDFT 
(Short Time Discrete Fourier Transform). Of 
course, an efficient FFT algorithm is used when 
implementing the DFT. 



Implementation and Analysis of 
Pitch Tracking Algorithms 
2001-12-19 

Stefan Uppgård 
Report for  

Master of Science Thesis Project 
at Clavia and KTH S3 

Release: P1.0.14 
 
 
 

 

   
 

25

  As discussed in 5.3.2, the most primitive form of 
spectral analysis is simply picking the maximum 
spectral peak, hoping this is the fundamental. When 
the fundamental harmonic is strong, and 
simultaneously other harmonics are weak, this 
should produce nice results. The spectral peak 
picker frankly traverses the data and remembers the 
position of the maximum peak. This method can be 
called the maximum of FFT method [16]. 
  A simple way to improve the method mentioned 
above is the division method [16]. After finding the 
maximum peak at position F, it is investigated if 
there are peaks at F/n, where n is an integer. It is 
assumed that the largest n, still having a peak at its 
position, corresponds to the fundamental frequency. 
How to determine if the analysed peak is a “valid” 
peak, is not discussed in [16]. A simple way of 
doing this is to set a threshold magnitude that the 
peak must exceed. 

5.3.4 PDA: FFT,  
Distance of spectral peaks 

  The methods in 5.3.3 will fail if the fundamental 
harmonic is missing. One way out of this is to 
explore the relationship between the harmonics of 
the signal.  
  It is sufficient to measure the distance between 
two adjacent spectral peaks to know the 
fundamental frequency. The method has since long 
been used when manually analysing spectrogram 
plots. The crude estimate of F0, as derived from two 
adjacent peaks, can be refined by analysing the 
distance to higher (or lower) harmonic peaks.  
  This approach could be expected to have been 
investigated even more than what was found in the 
information search underlying this project. 
However, it seems to be an area that is still active 
for research, since many articles published (such as 
[17]) originate from recent years. Nevertheless, 
some of the following sections do indeed explore 
the spectral harmonic relationship. 

5.3.5 PDA: FFT,  
Piszczalski and Galler 

  The Piszczalski and Galler (P & G) method [18] 
(1979) for predicting pitch from “component 
frequency ratios” is one example of algorithms 
evolved when the performance of digital signal 
processing was improved, and it was clear that 
processing digital data in frequency domain had 
some potential. 
  The method considers each peak in the spectrum a 
potential candidate for being connected to one or 
more harmonic numbers, ranging to a specified 
maximum17. By examining the magnitudes and 

                                                           
17 Fixed at 12 by Piszczalski & Galler. 

relationship of the spectral peaks, weighting factors 
are calculated which reflect the likelihood of each 
peak being associated with each possible harmonic 
number. 
  The weighting factors, initially set to zero, are 
updated through a procedure which is applied to all 
peak pairs formed from the peaks of the spectrum. 
For every pair with frequencies f1 and f2 (f1 > f2), 
the frequency ratio f1 / f2 is computed. The ratio is 
then compared to “harmonic-number” ratios of the 
form i / j (integers i > j). If the absolute difference 
between the ratios are less than a threshold, a match 
is declared. 
  If a match has been declared the weighting factors 
of connecting f1 to the harmonic number i, as well 
as the factor for connecting f2 to j, is incremented 
by 

)]3(03.01][1.0[ maxmin −+−⋅+ jiaa        (5.22) 
where amin and amax are the respective smaller and 
larger of the magnitudes at f1 and f2. The derivation 
of (5.22) is explained and discussed in [17] and 
[18]. 
  The highest weighting factor calculated 
determines a particular peak and a corresponding 
harmonic number, from which the fundamental 
frequency can be calculated. 
  Dorken and Nawab revisited the method in 1994 
[17], introducing a technique called spectral 
conditioning for restraining interfering components 
of the signal that would deteriorate the result of the 
P&G process. 
  The method follows a fairly complicated 
procedure, which for this project would not be 
possible to implement, but likewise provide some 
interesting theory for how suppression of 
interference could be taken care of. 
  The technique operates on the spectrum from a 
constant Q transform (5.3.7) and according to [17], 
“essentially performs circular shifts on the various 
short-time spectra in order to convert the log-
frequency excursions of the harmonic signal with 
greatest net energy into constant-frequency paths.” 
  This is done by an iterative eigen analysis for 
estimating the spectrum. (The Pisarenko method 
described in 5.2.11 is an algorithm originating from 
eigen analysis).  
  The first principal component ϕ(m)(f[k]) can be 
calculated using the power method [19], which is 
an iterative method for finding eigenvectors of a 
square matrix. In this case the square matrix should 
consist of the autocorrelated input signal and look 
like the left matrix in equation (5.5). The 
eigenvector corresponding to the largest 
eigenvalue, is called the first principal eigenvector 
[12]. 
  Then, a correlation measure for a particular 
frequency-shift k0 is calculated using 
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where Qx(nLT,f[k]) is the input spectrum at time 
nLT and L is a decimation factor.  
  The value k0, where the correlation is maximized, 
and the corresponding output rmax

(m)(nLT), are 
tested in a convergence test [17]. If the test fails, 
the power method is called for another iteration. If 
successful, ϕ(m)(f[k]) and k0 are the outputs of the 
iterative procedure. 
  The first principal component is run through the  
P & G method, where the resulting frequency is 
shifted k0, and then divided by the resulting 
harmonic number. 

5.3.6 PDA: Spectral Compression and 
Harmonic summation 

  Schroeder introduced in 1968, an algorithm 
demanding many computations, but still, one of the 
most reliable PDA’s available. The technique used 
is called spectral compression and it can derive an 
estimate for F0 from higher harmonics without 
demanding the corresponding harmonic numbers. 
Schroeder explores the fact that fundamental 
frequency should be the greatest common divisor of 
the frequencies of the individual harmonics. 
  Peaks present in the spectrum are found using a 
peak-picker traversing the data. [3] A histogram is 
built up having the frequencies of all the peaks at 
its entries. The frequencies are then divided by two 
and added to the histogram. The same procedure is 
repeated with compression factors 3, 4 etc.18 This 
will ideally result in a maximum of the histogram at 
the fundamental frequency. Schroeder also 
proposes an approach where the entries of the 
histogram are weighed by the magnitude of resp. 
peak. 
  Also introduced by Schroeder in 1968 were the 
Harmonic Product PDA and the Harmonic 
Summation PDA [3]. The later sum up the 
magnitude values of the spectrum at equidistant 
frequencies. The frequency that maximizes the sum 
is then F0. The magnitude values are multiplied 
with a weighing function diminishing towards 
higher frequencies, so that the lower frequencies 
will have greater influence of the sum. Also, to 
reduce the influence of background noise, the 
spectra is set to zero except for at the peaks and 
their surrounding. 
  The Harmonic Product PDA works in a similar 
way, but the spectrum is assumed logarithmic. 

                                                           
18 When to end the procedure is not defined, but a 
limit can be found empirically. 

5.3.7 PDA: Constant Q transform 
  The theory and the properties of the constant Q 
transform has been discussed in 3.3.3. It was 
concluded that it has properties appropriate for 
processing musical signals, since it can be executed 
so that the geometrically spaced bins correspond 
exactly to a musical semitones. The notes on the 
western musical scale are as a matter of a fact 
spaced geometrically. In addition, the tracking of 
frequency fluctuations at higher frequencies 
requires wider bandwidth. 
  Pitch tracking algorithms using the constant Q 
transform has been proposed by Judith C. Brown 
and Miller S. Puckette. In [20] they introduced a 
first algorithm that in following articles since, e.g. 
has been developed to be implemented by FFT 
[21].  
  A high resolution PDA based on the phase 
changes of the Fourier transform was introduced in 
1994 [22]. The ambition was to escape the demand 
in earlier algorithms for the analysed music to stick 
to the equally tempered scale19. Introducing this 
algorithm, it would be possible to analyse such 
phenomena as glissando, vibrato or instruments 
being tuned to other scales than the equal tempered. 
For these cases, the resolution had to be improved. 
  The Hanning-windowed Fourier transform 
evaluated for a window beginning on sample n0, for 
an input signal x(n) can be denoted 
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Eq. (5.25) substituted into (5.24) will lead to 
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An approximation for the DFT after one sample is 
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The digital angular frequency in radians per sample 
for bin k is the phase difference for a time advance 
of one sample. 

),()1,(),( 000 nknknk φφω −+=              (5.28) 

                                                           
19 Here the smallest frequency difference between 
notes is approximately 6 %. 
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where 
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  The method is hence carried out by getting an 
initial frequency estimate, most simply by taking 
the maximum peak of the constant Q spectrum. A 
calculation is made to determine the corresponding 
bin number for the FFT20. The values already 
calculated in the FFT, are then used in (5.26) and 
(5.27), finally giving the resulting high resolution 
fundamental frequency in (5.28). 
  The method is equivalent to a phase vocoder 
(5.3.8) using the FFT method, with a hop size of 
one sample. The advantage here is the 
approximation in eq. (5.27), which avoids a second 
FFT. 
  Worth noting is that Brown and Puckette claim 
this method to be more accurate than the technique 
using a quadratic fit of the magnitude of the 
selected estimated fundamental bin and its 
neighbours. (Compare section 7.5) 

5.3.8 PDA: Phase Vocoder 
  The phase vocoder was first introduced by 
Flanagan [23] as a time-domain technique, but the 
modern fast Fourier transform based 
implementation was displayed by Portnoff [24]. It 
has been used as an analysis/resynthesis tool in 
applications such as altering time scale or pitch 
scaling sound. The later application was recently 
implemented in real time, using the phase vocoder 
by a group at KTH with good results [25]. 
  The analysis part of the phase vocoder can be used 
for pitch tracking. It is usually based on a DFT for 
calculating a first estimate telling in which 
frequency bin the fundamental is situated.  
  The phase propagation between two adjacent 
frames, overlapping H samples can be denoted 

],[arg],[arg),( kMXkHMXkM ww −+=ϕ        (5.30) 
where Xw[M,k] is the short-time Fourier transform 
of the N long input signal at time-instant M. The 
factor 1/H is sometimes called the overlapping 
factor β. 
  The phase offset has to be wrapped, i.e. mapped 
into an interval from -π to π. The deviation from 
the bin frequency can then be calculated 

                                                           
20 This was in the simulation calculated as  
bindft = (fmin / freq.resolutiondft) 2(bincq/bins_octave), 
where fmin was the lowest bin’s centerfrequency and 
bins_octave the number of bins per octave used in 
the constant Q transform. 
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  The method can be seen as an interpolation of two 
adjacent frames of the DFT calculation. 

5.3.9 PDA: Auto- and Cross-
Correlation techniques in 
spectral domain 

  Following the introduction of the constant Q 
transform, Judith C. Brown also presented the 
“pattern recognition method” [5]. This method has 
got it’s inspiration from methods such as P&G and 
Schroeder (5.3.5 and 5.3.6). 
  The idea is to cross-correlate the spectrum with a 
pattern having 1’s at the appropriate positions, at 
harmonic distances. The number of components in 
the pattern are matched to what is “ideal” for that 
instrument and should be seen as an adjustable 
parameter. In other words, the number of 
components should match the average number of 
non-zero Fourier components for a particular 
instrument. 
  As the spectrum has logarithmic spaced 
frequencies, the distance between two adjacent 
harmonics is not equal to the fundamental 
frequency. For example, the spacing between the 
fundamental and the second harmonic is log(2), 
between the second and third components log(3/2). 
That way the correlating pattern can be constant. 
  The result of the cross-correlation should result in 
a dominant peak at the fundamental frequency. 
 
  A recent article [26] presents an algorithm where 
the possibility of doing an auto-correlation of the 
power spectrum is mentioned. The algorithm 
implemented there however, makes a logarithmic 
power spectrum of a standard autocorrelation, 
which then again in spectral domain, is 
autocorrelated. 



Implementation and Analysis of 
Pitch Tracking Algorithms 
2001-12-19 

Stefan Uppgård 
Report for  

Master of Science Thesis Project 
at Clavia and KTH S3 

Release: P1.0.14 
 
 
 

 

   
 

28

5.3.10 PDA: Cepstrum 
  The theory of Cepstral processing has been 
presented in 3.3.4. PDA’s employing this technique 
have mostly done it analysing speech signals. 
 

 
figure 5.h) The Cepstrum 
 
  Detecting the significant peak at 0̂T  of the 
Cepstrum forms the principle idea of a Cepstrum 
PDA. Basically, the input signal is divided into 
windowed frames, with for example a size of 512 
samples and a Hann window. The frame is Fourier 
transformed, logarithmized and then inverse 
Fourier transformed back to time domain. Once 
there in Cepstrum, the significant peak at cuefrency 

0̂T  is determined with a simple peak picking basic 
extractor, traversing the operating interval for the 
PDA. 
  It has been shown  that Cepstrum algorithms are 
sensitive to noise [27]. A method have been 
employed in [27] where the MUSIC algorithm21 is 
used for estimating the background noise 
characteristics, successfully improving the 
performance of the PDA. 

5.3.11 PDA: Wavelets 
  (The basic theory of wavelets is discussed in 
3.3.5.)  
  Tristan Jehan [28] implemented22 an algorithm 
using Wavelet Transform, considering its nice non-
linear properties. The WT uses short windows at 
high frequencies and long windows at low 
frequencies. This technique, using logarithmically 
spaced frequencies can be compared to the constant 

                                                           
21 The Multiple Signal Classification (MUSIC) 
algorithm estimates the noise subspace using eigen 
analysis. 
22 Though only implemented in computer 
simulations using MATLAB®. 

Q transform (5.3.7). He adopted a speech orientated 
algorithm, but showed that after some 
improvements, it gave nice results also for musical 
sounds. 
  The technique using the wavelet transform for 
pitch detection was first introduced by 
Kadambe/Boudreaux-Bartels [29]. They adopted 
results from Mallat [30], where it was showed that 
when analysing images, the use of wavelet 
functions with derivative characteristics produced 
maxima in the wavelet transform across many 
coincident scales along sharp edges.  
  The same maximum should occur, at the GCI23 for 
a speech signal, when filtered through a derivative 
function [28]. That way the time between each 
maximum should correspond to 0T . 
A filter function can be defined 

)()()( ttt
ba kk ϕψρ ∗=                                  (5.32) 
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The righthand side in 5.33 is a lowpass function 
and the conjugate mirror filter of ψ(t), which is a 
highpass wavelet function. If the PDA’s measuring 
range is between f1 and f2, the final filtering 
function constructed should have a similar 
bandwidth. Therefore the lowpass scaling function 
is 

1

2
f
Fska =                                                         (5.34) 

and the highpass wavelet function 

2

2
f
Fskb =                                                         (5.35) 

  The filtering function in 5.32 will result in pseudo 
sinusoid, where the distance between two adjacent 
peaks is 0̂T .  
  Choosing the mother wavelet is very important 
since it defines the behaviour of the wavelet 
transform. For voiced speech it is often modelled as 
a filtered impulse train, where the period between 
each pulse represents the pitch period [31]. The 
mother wavelet used by Tristan was a derivating 
function, a Daubechies filter24. 

                                                           
23 GCI - Glottal Closure Instant 
24 Suggested by Ingrid Daubechies, filters that 
under certain conditions provide perfect 
reconstruction. 
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5.3.12 PDA: Comb filters 
  Comb filters have been used for measurements 
such as pitch strength (“pitchiness”) [32] as well as 
surpressing harmonics, but there are also pitch 
determination algorithms applying the technique. 
  The principal in a method proposed by Miwa, 
Tadokoro and Saito [33] is to eliminate the pitch 
and its harmonic frequencies. This is done with 
comb filtering technique (3.4.3). The pitch is 
estimated by detecting zero outputs of cascaded 
comb-filters.  
  The algorithm was designed to detect the pitch in 
three octaves, from tone C3 to B5. 
The transfer function of the comb filter can be 
written 

8,4,2,1,12,,2,1
1)(,

==

−= −

qp

zzH q
pppq

Κ
             (5.36) 

where p represents a semitone in one octave and q 
is the order of the comb filter. The filter in (5.36) 
can be implemented as yp(n) = xp(n) – xp(n-q). 
  It’s necessary that each tone p has its own 
sampling frequency fsp, to get the frequency 
response plotted in figure 5.i.b. That way, three 
different filters, having orders q = 2,4 and 8, can 
put out tone p in the three octaves 3, 4 and 5.  
  If the output of H8,p(zp) is zero, the tone played is 
p. Furthermore if H4,p(zp) is zero, tone p must be in 
octave 4 or 5. Finally if H2,p(zp) is zero, it has been 
deduced that the tone number must be p in octave 5. 
  The comb filters are put in cascade as described in 
figure 5.i.a, but since each of the filters have 
different sampling frequencies through different 
unit delays zp

-1, the system is oversampled using25 
(figure 5.i.c) 
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  Consequently, the tone number p is found as the 
zero output from output y1 to y12. Then the filters 
H8,p are next replaced with H4,p respectively H2,p to 
decide which octave the tone is in. 
 
 

                                                           
25 According to [28], where fs = 54054 Hz was 
used, the maximum error of the approximate fsp was 
0,14 %. 

 
figure 5.i.a) Cascade connection of  
                    comb filter H8,p(zp) 
 

 
figure 5.i.b) Frequency response of  
                    comb filter Hq,p(zp) (q = 2,4,8) 

 
figure 5.i.c) Implementation of H8,p(zp) = 1 - zp

-8 
 
  There have also been techniques using an 
inharmonic comb filter, where the center 
frequencies are not equidistant, but spaced 
according to a function. This could offer  
advantages when studying sources having 
inharmonic components (2.5). However, a relation 
between the partial frequencies, or at least some 
hypothesis for the relation, is needed in advance.         
  Galembo and Askenfelt [34] introduced a 
technique which was applied to the acoustical 
piano.  

5.3.13 PDA: Generalized Spectrum 
Black and Donohue propose a PDA based on the 
Generalized Spectrum [35]. 
  The Generalized spectrum is defined as 

)]()([),( 2121 fXfXEffGS ⋅=                (5.38) 
where X(f) is the discrete Fourier transform (length 
M) of a discrete input signal x(n). 
  The main diagonal of GS have real values along 
the main diagonal, corresponding to the PSD 
(Power Spectral Density) estimate of x(n). The 
other elements are complex valued, and reflects the 
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coherence between different frequency components 
in the DFT. 
  A signal with pitch, could be called a 
cyclostationary process, which in GS introduce 
correlation and non-zero values in the off-main 
diagonal regions. 
  The collapsed average transforms the GS into one-
dimensional, which makes it easy to identify 
diagonals with significant correlation values. The 
collapsed average can be denoted 

),(
),(

)(
lGdiag
kGdiag

kCA =  for k = 1,2,…,M      (5.39) 

where diag(G,k) represents a sum along the kth 
diagonal of G. 
  The pitch is extracted as the maximum value of 
CA, which hopefully corresponds to the pitch 
frequency, or in some cases a multiple of the pitch. 
Therefore Black/Donohue prefer to take the FFT of 
CA for a more consistent pitch period estimation. 

max0̂ m
f
MT

S

=                                                 (5.40) 

where mmax it the index of the maximum value of 
the FFT of CA. M is as mentioned above the 
number of elements in X(f). 

5.4 Combined Time and Spectral 
Domain PDA 

  Algorithms that clearly operate in both temporal 
and spectral domain are described herein after. 

5.4.1 PDA: Rough FFT and LS-fitting 
  An algorithm has been evaluated that uses a very 
rough FFT, 128 points, to get a crude estimate of in 
which frequency bin the signal energy is situated. 
  That frequency estimate is then used to initiate a 
fit of a sinusoidal-curve to the input signal. The fit 
is done according to a IEEE standardized 
iteration26, where the frequency resolution can be 
arbitrarily increased through each iteration. 

5.4.2 PDA: Loose-Harmonic Matching 
  Quiros and Enriquez proposed a PDA, which they 
claimed could correctly estimate the fundamental 
frequency of practically any musical sound [36]. 
An estimate of the short-term spectrum Xw(ω)  for 
the windowed sequence xw(n) is set up as 

∑ −=
k

kw PkWAX )/2()(ˆ πωω              (5.41) 

given a candidate pitch P and the window W(ω). 
The coefficient Ak is given by 

                                                           
26 The IEEE Standard (IEEE-STD-1057). 
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For this approximation, the error is calculated 
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is a recentering value, that handles the problem of 
the harmonic k not being at exactly its harmonic 
position 2πk / P. 
  Expression (5.43) is evaluated for every P under 
consideration and will provide a estimate for the 
pitch when it’s minimized. The estimate for P was 
in [36] provided by an ordinary ACF calculation 

∑ −=
n

wwx mnxnxmr )()()(                       (5.45) 

The value of m where the first peak is found (m = 0 
not included) will serve as the first estimate for P 
and (5.43) is evaluated at the values 
P,2P,3P,…,P/2,P/3… 

5.5 Other PDA 
Algorithms that were not of the kind that they could 
be categorized as being completely of temporal or 
spectral kind, but using a somewhat different 
approach have been put here.  

5.5.1 PDA: Neural Network 
  Neural Network PDA’s can process data that are 
either temporal, spectral or both. In [37], the 
technique was said to have a promising future in 
speech analysis, since in such architectures, 
functions such as pitch detection, formant 
estimation, etc. can be implemented in parallel. Of 
course, the same would then also be valid for 
musical analysis. 
  Common for neural networks is that they extract 
characteristics of a signal, compare these to what is 
stored in the network and makes a classification.  
  The neural network has to be trained by training 
data, so that it learns how to distinguish and 
classify the information. 
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5.5.2 PDA: Heterodyne filtering 
  If the fundamental frequency is known, the 
heterodyne filtering technique can be used. It will 
serve as an indication for the deviation of the 
measured tone to a reference frequency. Electronic 
tuners uses heterodyne filtering. 
  Assume the measured signal x(t) to be a sinusoid 
of frequency ω. Multiplying the signal by ejωrt, 
where ωr is the reference frequency, results in 
 

[ ])sin()cos(
)sin()(

rrrr tjt
tty

ϕωϕω
ϕω

+++
⋅+=

                       (5.46) 

 
Here, y(t) will contain the difference frequencies 
ω+ωr and ω-ωr from well known trigonometric 
formulas. The sum frequencies are removed by 
filtering and the derivative of the phase is then 

rdt
tyd

ωω −=
∠ )(

                                         (5.47) 

The slope of phase thus in fact shows the deviation 
of the input signal’s frequency to the reference 
frequency. Like in 5.3.8, the phase offset has to be 
wrapped, i.e. mapped into an interval from -π to π. 
  The same method of studying phase can be 
applied to any bandpass filter. 
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6. Results, Simulations and 
Evaluations 

In this section, some of the results from the many 
simulations that have been performed, are 
presented. Often the results are presented along 
with conclusions that have been drawn. 
  Not all of the algorithms discussed in the theory 
section have been simulated. The algorithms that 
have been simulated, either had potential for being 
implemented in the target system, or was simulated 
for improving the understanding of pitch algorithms 
in general. 
  The results have, in the cases where it was 
appropriate, been compared to the results from 
other PDA’s. In other cases, the results are used for 
presenting benefits and drawbacks of the algorithm. 
  The algorithms have been tested on sound 
recordings that are listed in resources, at the end of 
the document. The recordings have been chosen as 
to represent signals form a variety of different 
musical instruments. 
  The simulations that have been made, have had 
the purpose of determining if the PDA is suitable in 
a musical context (compare section 9.1). It can 
therefore be easy to misinterpret the results. An 
algorithm that here is assigned a bad grade, can for 
a different purpose perform well. 
  The study has been done from an implementation 
point of view. Therefore the factor complexity has 
been important. 
  It is hard to compare algorithms in a fair way. 
Hess and Rabiner [3] have tried. Describing the 
results in a statistical manner is desirable, but in 
this project hardly meaningful. The sound 
recordings used for evaluation, have not been 
compared to  correct pitch information. The correct 
pitch information could be extracted with an off-
line method. This is left for future studies. 
  Hence, the evaluation has been made by listening 
to an oscillator whose pitch have set by the PDA. 
The original signal and the resynthesized oscillator 
signal have been compared by listening 
simultaneously in two different sound channels (left 
and right speakers).  This is consistent with the fact 
that pitch is a psychological term. 

6.1 Error Analysis 
In the analysis of the PDA’s, the following aspects 
are discussed: 
Response time, accuracy, resolution and 
complexity. 
  Response time is the time from when a tone’s  
attack is initialized to when the PDA delivers a first 
fundamental frequency estimate. Accuracy is a 
measure for how trustworthy the result is. 
Resolution describes the factors deciding which 

frequency resolution the pitch estimate has. The 
complexity of the algorithm has been a leading 
factor during the project. Complexity involves 
memory requirements, arithmetical operations 
needed and conditions. 

6.2 Results Time Domain PDA 
  Results from algorithms being referred to being of 
time domain character is presented here. 

6.2.1 Results: Threshold Crossing 
(Algorithms 5.2.3 - 5.2.4) 
  Algorithms using threshold crossing for basic 
extraction, all have in common the fact that they 
need a “clean” signal for good performance. Of 
course, when a large amount of preprocessing is 
done, a threshold crossing extractor can for some 
applications be just about the only thing needed. 
  Figure 6.a shows the result of the zero crossing 
algorithm, used on a tone from the saxophone 
recording [R3]. The algorithm is seriously sensitive 
to any harmonic, causing additional polarity 
changes. It is obvious that moving the threshold 
from zero to a non-zero level, would improve the 
performance. In this case, a negative threshold 
would be useful. However, moving the level to a 
positive value would rather worsen the result. 
  Adding a second threshold, putting one at positive 
and one at negative level, definitely improves the 
result (figure 6.b).  
 
 

 
figure 6.a) Zero crossing results 
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figure 6.b) Two threshold crossing results 
 
Summary: 
Response time: Good. Fast, one signal period, if no 
postprocessing added. 
Accuracy: Poor. Very sensitive to the non-
stationary feature of the signal. 
Resolution: Good. Period resolution is 1/Fs, and 
improved by interpolation. 
Complexity: Very Good. Very low, is implemented 
very facile. 

6.2.2 Results:  
Envelope Following PDA 

(Algorithms 5.2.5 - 5.2.6) 
  Results from the envelope following PDA applied 
to the same saxophone tone as in preceding section 
results in an envelope plotted in figure 6.c. The 
improvement of highpass filtering the signal 
followed by a second envelope follower is obvious. 
The number of erroneous peaks, are reduced in the 
difficult interval from sample 3500 to 4500. Yet 
another iteration of highpass filtering + envelope 
follower should remove the one error remaining on 
the positive envelope. 

 
figure 6.c) Envelope following results 

 
figure 6.d) Highpass filtered envelope 
 
  For more complex signals, such as the acoustic 
piano sound [R4], even a second highpass filtering 
and envelope won’t improve the result. Figure 6.d. 
shows the same tone as analysed with the reduced 
ACF PDA (6.2.9). Only in the vicinity of sample 
1,1 x 103 the pitch estimate is correct. (The true 
pitch in this segment is about 116 Hz, Bb2). When 
the signal is more complex and as the overtone 
content increase, it seems like the result is 
deteriorated. 
 

 
figure 6.e) Cascaded highpass filtered envelopes 
 
  Center clipping and compression is not considered 
to improve the performance, though a ‘tighter’ 
lowpass filtering probably would. Here however, 
different from the reduced ACF PDA, a source for 
a recursive setting of the lowpass cut-off frequency 
is not obvious and has not been tried out. 
  One problem in the simulations have been the 
issue of setting an appropriate value for the 
envelope decay constant. 
  A second problem has been to decide if the results 
from the positive or the negative envelope is most 
valid. The approach by Engdegård [10], selecting 
the result having the least variance in the last 
estimates have been tried. It has however during the 
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simulations been hard to get good results from this 
measure. 
Summary: 
Response time: Good, Fast, one signal period, if no 
postprocessing added. 
Accuracy: Ok. Most problems occur during the 
attack of tones, but also sudden unexpected pitch 
jumps as at sample 3200 in figure 6.d. for the 
positive envelope. 
Resolution: Good. Period can be measured either 
from the zero crossing period or the peak positions 
of the envelope. Resolution is 1/Fs, but can be 
improved by interpolation. 
Complexity: Very Good, Low, one envelope 
follower and first-order highpass filtering is cheap. 
Adding up the order of envelopes increases the 
complexity. Variance calculation of past estimates 
adds additional calculations. 

6.2.3 Results: Peak Detecting PDA 
(Algorithms 5.2.7 - 5.2.8) 
  The algorithm by Reddy (5.2.7), has not been 
simulated in detail. Hess [3] stated that the 
algorithm was not suitable for real time 
implementation, since the postprocessing correction 
routine works on a longer signal segment. But, it is 
though enlightening to study it since it was one of 
the first in the peak detecting area. 
  The algorithm by Gold & Rabiner (5.2.8) gives an 
instantaneous response and the fundamental does 
not need to be present. The result is more stable 
than the envelope follower algorithm. In figure 6.f 
it is shown that the response is slower, but the 
estimate makes no sudden jumps. The bad 
resolution is from the fact that no interpolation has 
been performed. 
  The algorithm will for difficult tones like the 
piano tone analyzed in figure 6.e, have severe 
problems (figure 6.g). The estimate is stable, but 
wrong! The true pitch should be at about 116 Hz, 
one fourth of the result here! 

 
figure 6.f) Gold & Rabiner results 
 

 
figure 6.g) The circles and crosses indicates the 
peaks found by the algorithm. 
 
  Center clipping can improve the performance of 
algorithms detecting peaks. The number of peaks 
will be reduced and facilitate the analyze process. 
  As for the envelope following algorithms, 
recursive lowpass filtering is tedious. 
Summary: 
Response time: Ok. A new estimate is calculated at 
each positive zero crossing. 
Accuracy: Ok. Better than threshold crossing and 
envelope following algorithms, but many errors 
occur for difficult signals. 
Resolution: Good. Can be improved by 
interpolation. 
Complexity: Ok. Not cheap, includes both envelope 
following, zero crossing analysis and the candidate 
analysis. Analysing the candidates for the most 
likely period is tedious. 

6.2.4 Results: Simple Basic Extractor 
with Filterbank Preprocessing 

  The method systematically fail when no 
fundamental is present. Selecting the filterbank 
channel having most energy often gives an estimate 
of type double- or triple octave error.  
  It was tested if selecting a lower filterbank 
channel could be done when the energy therein 
trespassed a certain threshold level. This method 
didn't prove to be accurate enough. 
 
Summary: 
Response time: Ok. Depends on the basic extractor 
used at the end of the filterbank. 
Accuracy: Fairly Ok. The results were not accurate. 
Resolution: Ok. Depends on the basic extractor 
used at the end of the filterbank. 
Complexity: Ok. At least one bandpass filter per 
octave and one or more basic extractors. 
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6.2.5 Results: One pole notch 
adaptation with RLS and LMS 

  The parameters for a one-pole notch filter has 
been calculated using adaptive RLS algorithm. RLS 
resulted in faster and more accurate result than the 
LMS algorithm. The method suffers from serious 
problems such as its sensitivity to noise. Figure 6.h 
shows the result from a composition of a saxophone 
tone and a pure sinusoidal signal. The reference 
estimate is given from the reduced ACF PDA. The 
RLS algorithm can be set with a parameter λ which 
decides the behaviour of fast response versus stable 
estimate. 
  The noisy saxophone signal doesn’t come close to 
the true estimate at any point, which it however 
does for the pure sinusoid. The estimate is adapted 
very slowly to the true sinusoidal fundamental, 
which could be changed by a different value of λ. 
This could then on the other hand cause the signal 
to become unstable. 
 

 
figure 6.h) One pole notch filter adaptation 
 
Summary: 
Response time: Fairly Ok. Can not be set too fast, 
since that could make the algorithm unstable. 
Accuracy: Poor. Very noise sensitive. 
Resolution: Good for a noise-free signal. 
Complexity: Fairly Ok. Not cheap. Most effort is 
used to calculate the filter parameters. 

6.2.6 Results: Autocorrelation 
(Algorithm 5.2.14) 
  The autocorrelation PDA is very reliable and 
accurate. The same piano tone analyzed in 6.2.2 
and 6.2.3 gives for the ACF the result in figure 6.i. 
After the attack, when the tone is somewhat 
stationary, the result is very exact. In this 
simulation the estimate is updated every sample. 

 
figure 6.i) Results from acf PDA 
 

 
figure 6.j) The correct peak situated at the 
fundamental period sample 
 
  The algorithm picks the maximum peak of the acf 
and assumes this corresponds to the fundamental 
period (figure 6.j). The problem of only selecting 
the closest peak is that the resolution can be very 
bad. Using a larger correlation window will adjoin 
additional peaks and the distance can be averaged.  
  Here only lowpass filtering has been used in the 
pre-processor. Center clipping does improve the 
result. 
Summary: 
Response time: Very Good. Can be updated every 
sample if implemented so. 
Accuracy: Very Good. Very accurate when 
calculated at every sample. 
Resolution: Ok. Depends on the length of the 
correlation window. Averaging over several peaks 
is necessary. 
Complexity: Fairly Ok. The main algorithm is an 
ordinary acf which will demand many calculations. 
The acf can be speeded up by using the FFT27.  

                                                           
27 According to [6], the number of real 
multiplications using the over-lap save method 
would cost (N = frame length, M = overlap data) 
cFFT  = 4 N log22N / (N-M+1) calculations per 
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6.2.7 Results: AMDF 
(Algorithm 5.2.15) 
  Hess [3] concluded about the AMDF PDA’s: 

• The autocorrelation and AMDF PDA’s are 
comparable in performance. Highly 
correlated signals have a low minimum of 
the AMDF and vice versa. 

• The significant minima of the AMDF are 
usually sharper than the corresponding 
peaks of the ACF. 

• The computation of the AMDF is faster 
since no multiplication’s are needed and it 
allows for a comparatively short frame. 

• The AMDF is sensitive to intensity 
changes, whereas the ACF is fairly 
insensitive. 

• Both ACF and AMDF are sensitive to a 
dominant formant structure, which is 
helped up by linear and/or non-linear 
preprocessing. 

 
  The AMDF was tested and compared to the ACF 
function, but showed inferior performance. This 
was probably caused by the sensitivity to intensity 
changes mentioned above. 
  Implementing the AMDF PDA, as well as the 
ACF PDA, would exceed the limitations given by 
the target system, and therefore the further studies 
concentrated on the cheap algorithm derived from 
the Cooper and Ng method. 
 
Summary: 
Response time: Good. Depends on the 
implementation. Could be updated every sample. 
Accuracy: Good. Did show inferior performance to 
the ACF PDF in simulations. 
Resolution: Good. Has a sharper peak than the ACF 
and could be improved by interpolation. 
Complexity: Fairly Ok. Not cheap. Comparable to 
the ACF but no multiplication’s is done, only 
subtractions. This is however not an advantage in 
the target system. 

6.2.8 Results: Cooper et al 
(Algorithm 5.2.18) 
  The PDA by Cooper and Ng was a very 
interesting algorithm because of its cheap 
calculation cost. Initial simulations of the algorithm 
gave results that were very promising. Figure 6.k 
shows a typical pitch contour resulting from the 
algorithm. 
  The algorithm has some design parameters that 
must be set in an appropriate way for optimum 
result. There are a number of thresholds that must 

                                                                                    
output point, compared to ccorr  = M for the direct 
cross correlation. 

be set. What is the least similarity ratio necessary 
for accepting the segments as similar? How equal 
in time must the segments be? How many segments 
should be saved an compared? 
  Trying different setups and signals, revealed that 
the appropriate similarity ratio threshold was 
dependent on the frequency of the tone played. A 
low frequency tone was best pitch tracked when the 
similarity ratio was high. For higher pitched tones, 
this demand was not as crucial. 

 
figure 6.k) Results from the Cooper and Ng PDA 
 
Summary: 
Response time: Ok. A new estimate is calculated at 
each positive zero crossing. 
Accuracy: Ok. Better than threshold crossing and 
envelope following algorithms. 
Resolution: Ok. Zero crossing resolution can be 
improved by interpolation. 
Complexity: Very Good. Cheap. Involves a 
correlation calculation and signal feature extraction. 

6.2.9 Results: Reduced ACF 
(Algorithm 5.2.19) 
  The experiences made from the simulations of the  
Cooper and Ng PDA, led to the development of an 
algorithm that would be more suitable for real-time 
implementation. This algorithm has accordingly 
been developed by Leopold Roos and the author 
during this project. 
  The main problem with the Cooper and Ng PDA, 
is that the waveform landmarks, the six points, can 
not be chosen directly at the sample instant. One 
segment has to be saved, and then the six points are 
picked. The six points can be seen as describing 
essential characteristics of the waveform, would 
there be other ways of describing the 
characteristics? Preferably these characteristics 
should be possible to pick at the sample instant, 
with no memory necessary. 
  Characteristics that have been considered are: 

• The area of the signal, one for the positive 
part and one for the negative. 
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• The maximum value and the minimum 
value. 

• The time instants at where the maximum 
and minimum occur. 

• The length in time of the segment. 
• Number of derivative sign changes during 

the segment. 
 

 
figure 6.l A - positive area, a - positive length,  
                  b - minimum instant occurrence 
 
  As a result, the characteristics that were most 
important and showed necessary for accurate 
correlation / similarity calculations were, the 
maximum- and minimum-value and the length of 
the segment. 
  For the improvement of the algorithm, it seemed 
that some kind of intelligent preprocessing was 
necessary. It was therefore investigated if the 
lowpass filter cutoff frequency could be set 
recursively and if the center compression level as 
well could be set recursively. Figure 6.m. shows 
part of the result when a fixed cutoff frequency of 
3000 Hz is compared to the recursively set cutoff. 
 

 
figure 6.m   Solid - Recursive Cutoff 
 Dotted - Fixed Cutoff 
 
  Simulations have shown that the length of the 
segments saved, was a good measure for an upper 
limit of the fundamental frequency. The filter cutoff 
is set corresponding to the mean length of the four 
most recent segment lengths. 

  The "tight" lowpass filtering is one of the reasons 
why the few characteristical values, max, min and 
segment length suffice for good performance. Other 
characteristics of the signal, deriving from higher 
partials are removed by the lowpass filter. 
  The center compression level is set at a rate of 
40% of the maximum value of the four most recent 
segments. 
  As mentioned in 6.2.8, the similarity ratio 
threshold, the means for deciding which segments 
belong together, had in simulations shown that low 
pitched tones require high similarity ratio threshold 
for best performance. Therefore the similarity ratio 
level is set as function of the lowpass filter cutoff 
frequency. 
  A simulation was run to compare the Cooper and 
Ng to the Reduced ACF (figure 6.n.). Comparing is 
difficult and the setup for the Cooper and Ng 
algorithm is done according to the authors 
interpretation from the document by Cooper and Ng 
[1]. In this simulation the signals were filtered with 
the same LP filter. The Reduced ACF uses no 
confidence counter (8.6), but Cooper & Ng needed 
a length of 5 to reduce the number of errors. At 
least it is clear that the Reduced ACF is not inferior 
to the Cooper and Ng algorithm. 
  Figure 6.o. illustrates a problem with the method 
often occurring. When the smaller peak in one of 
the segment just pass the zero level, and the 
segmentation is altered, half pitch errors can occur. 
One thing that reduce the effect of this is to some 
part center clipping. Also, since correlation is done 
both for the maximum and the minimum segment, 
and the periods must agree, the effect is reduced. 
This is also the main reason for the much more 
stable result than the Cooper and Ng PDA. 
 
 
 
 

 
figure 6.n) Comparing the reduced ACF to the 
Cooper and Ng algorithm. 
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figure 6.o) A typical error when segmenting the 
signal. 
 
Summary: 
Response time: Ok. A new estimate is calculated at 
each positive zero crossing. 
Accuracy: Ok. Better than threshold crossing and 
envelope following algorithms. 
Resolution: Ok. Zero crossing resolution can be 
improved by interpolation. 
Complexity: Good. Cheap. Involves a correlation 
calculation and signal feature extraction. 

6.3 Results Spectral Domain PDA 
Here, results from spectral domain PDA's are 
presented. 

6.3.1 Results: FFT with different 
harmonic analysis 

(Algorithm 5.3.3 – 5.3.6) 
  In figure 6.k., the same piano signal as analyzed in 
6.2.6, has been analyzed using a Fourier transform. 
The dotted line shows the pitch estimate when 
simply picking the maximum peak of the spectrum, 
and the solid line is the estimate when to that peak, 
using the division method. 
  The result is very bad, it is obvious that studying 
individual peaks of the spectrum will fail. 
Harmonic overtones are chosen very often for this 
signal. The division method gives a better result, 
but does often choose a subharmonic estimate. It is 
also tedious finding a limit for how many sub peaks 
the method should look for and if the peak verified 
should be accepted (i.e. setting an appropriate 
threshold). For softly played signals with few 
overtones, the results are however better.  

 
figure 6.p) Simple spectral peak extracting methods 
 
  The P & G method (5.3.5) explores the 
relationship of the peaks of the spectrum and figure 
6.p. shows that the result is seriously improved. The 
method is however not accurate enough. There are 
still some parts where the method fail. 
 

 
figure 6.q) Results from the P&G method 
 
  The resolution of the FFT must be quite high to 
accurately determine the peaks. When the FFT 
window of the simulation in figure 6.q. was halved 
to 512, the number of errors were doubled. 
 
Summary: 
Response time: Good. Depends on the window 
length and the update interval. The update interval 
could be done at every sample. 
Accuracy: Ok. Depends on which spectral analysis 
method used.  
Resolution: Good. Depends on the FFT size N, 
giving resolution 1/N. Could be improved by 
parabolic fitting to adjacent frequency bin values. 
Complexity: Fairly Ok. Needs a Fourier Transform. 



Implementation and Analysis of 
Pitch Tracking Algorithms 
2001-12-19 

Stefan Uppgård 
Report for  

Master of Science Thesis Project 
at Clavia and KTH S3 

Release: P1.0.14 
 
 
 

 

   
 

39

6.3.2 Results: Constant Q 
(Algorithm 5.3.7) 

 
figure 6.r) The logarithmic spectrum from the 
constant Q transform 
 
  The spectral frequencies resulting from the 
Constant Q Transform, are logarithmically spaced. 
The results for all the harmonic analysis techniques 
presented in the two proceeding sections can also 
be applied this logarithmic spectrum. Of course 
they must be modified to handle the logarithmic 
spacing. e.g. the harmonic summation method 
corresponds to using the harmonic product method 
(5.3.6). 
  The high resolution PDA presented by Brown 
(5.3.7) has in the simulations proved to have high 
accuracy. However, the high resolution results are 
often spoiled when frequency bin selection errors 
occur, such as illustrated in figure 6.r., where the 
higher harmonics are stronger than the 
fundamental. In the simulations the Piszczalski and 
Galler method was used for bin picking. A second 
problem is that the high resolution is useless if too 
few frequency bins are used. The method can 
modify the frequency estimate about 2 % from the 
initial estimate. 
  The transform was successfully implemented 
using the FFT and calculations could also be saved 
by using the precalculated Kernel as proposed by 
[38]. 
Summary: 
Response time: Good. Depends on the window 
length and the update interval. The update interval 
could be done at every sample. 
Accuracy: Ok. Depends on which spectral analysis 
method used.  
Resolution: Very Good. Constant frequency to 
resolution value Q, i.e. Better resolution at higher 
frequencies. 
Complexity: Fairly Ok. Needs a Fourier Transform. 
 
 

6.3.3 Results: Phase Vocoder 
(Algorithm 5.3.8) 

 
figure 6.s) Interpolation using the phase vocoder 
 
  The phase vocoder gives very high resolution of 
the frequency estimate. In this simulation (figure 
6.s.) of the saxophone signal, the frequency 
estimate was determined at about 0.25 Hz 
resolution. As for the high resolution algorithm 
discussed in the previous section, the result is 
sensitive to finding the correct pitch estimate in the 
spectral bin search. In this simulation, only the 
maximum of FFT method was run, which in 
preceding sections has proven to be too poor. 
Summary: 
Response time: Ok. Depends on the window length 
and the update interval. The update interval could 
be done at every sample. 
Accuracy: Ok. Depends on the initial frequency bin 
finding method. 
Resolution: Very Good. Very high resolution. 
Complexity: Poor. Needs a Fourier Transform and 
phase study. 

6.3.4 Results: Cepstrum 
  It is known according to [27], that FFT based 
Cepstral methods are accurate and reliable for 
determining fundamental frequency in voice 
signals, but also that the method degrades severely 
in a noisy environment. 
  A way of coping with this, could be a pitch 
estimator that utilizes the MUSIC algorithm for 
estimating background noise characteristics 
(introduced in [27]) and compensates for this. 
  The Cepstrum has been simulated for musical 
signals, but the results have not been as good as 
expected. Since the Cepstrum needs a lot of 
processing, it has therefore not been considered 
interesting for further analysis. 
  The Cepstrum should, like the ACF, benefit from 
centerclipping.  



Implementation and Analysis of 
Pitch Tracking Algorithms 
2001-12-19 

Stefan Uppgård 
Report for  

Master of Science Thesis Project 
at Clavia and KTH S3 

Release: P1.0.14 
 
 
 

 

   
 

40

6.4 Results Combined PDA 
  Algorithms using t both temporal and spectral 
techniques are presented here.  

6.4.1 Results: Rough FFT and 
sinusoid adaptation 

 
figure 6.t.  Solid line – LS Fit 
 Dotted line – Reduced ACF 
 
  In the search for a cheap algorithm in spectral 
domain, the size of the FFT was made smaller. In 
this PDA a FFT of 128 points was used to establish 
a rough estimate, which was refined by least 
squares fitting the signal to a sinusoidal signal. The 
fitting was made in an iterative algorithm, where 
the estimate was improved in each cycle. Hence the 
resolution was arbitrary, only depending on the 
number of iteration cycles used. 
  Fitting the signal to a sinusoidal signal, will fail 
when the signal has characteristics like the bass 
signal in figure 4.b. at page 16. For more ‘simple’ 
signals like the saxophone signal, the algorithm 
should perform better. In figure 6.t. the result is 
compared to the result from the Reduced ACF PDA 
for the saxophone. 
  This PDA does however track an higher octave in 
the vicinity of sample 2,7 x 104. The rough 
frequency bin picking does often pick higher 
harmonics. 
  One great opportunity of fitting the signal to a 
reference is that a measure of the error will be 
available when comparing the original to the 
adapted signal. Thus, it is possible to know if the 
estimate is good enough. But, as mentioned the 
method suffers from the assumption of sinusoidal 
behaviour. 
 
Summary: 
Response time: Good. Depends on the window 
length and the update interval. The update interval 
could be done at every sample. 
Accuracy: Poor. The sinusoidal fit is questionable. 
Not safe to tracking higher harmonics. 
Resolution: Very Good. Very high resolution. 

Complexity: Poor. Needs to compute a FFT and a 
following least squares calculation in at least three 
iterations. 
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7. Preprocessing 
  The term preprocessing means that this functional 
block is put first in the PDA, in front of a basic 
extractor. 
  The purpose of preprocessing the received data, is 
partly to reduce the amount of data and partly to 
extract the features of the fundamental frequency. 
The periodicity information should be augmented. 
  Preprocessing can strictly range from a simple 
lowpass filter to advanced Fourier transform. In this 
thesis, preprocessing functions have been 
considered to be simple operations that are used in 
a common way in many PDA’s. 
  In this section, theory is discussed, but also some 
results from the simulations are put in. 

7.1 Lowpass filtering 
  Coming across a PDA that does not apply lowpass 
filtering to the input data is very rare, but there are 
a few examples. A lowpass filter, when put at the 
appropriate cut off frequency, can do miracles to 
the performance of a PDA. Figure 7.a shows how 
the results may vary for the bass tone discussed in 
4.5, as the cut off frequency is altered. (The theory 
of filtering is discussed in 3.4.) 

 
figure 7.a  A – Original signal (fundamental 50 Hz) 
                 B – Lowpass filtered at 200 Hz 
                 C – Lowpass filtered at 100 Hz 
                D – Lowpass filtered at 50 Hz 

7.2 Bandpass filtering 
  Bandpass filtering can be applied to eliminate 
frequencies outside the measuring range.  
  Bandpass filters are used in filterbanks, which are 
sometimes used to filter out the measuring range 
into subranges of about one octave. 

7.3 Highpass filtering 
  Highpass filtering can be done to remove DC- or 
other lowfrequency-components. A very simple 
way of doing this is to differentiate the signal as 
y(n) = x(n) – x(n-1). 
  In Dolansky’s envelope following algorithm [9], a 
first order highpass filter is applied to the envelope, 
that way increasing the performance by removing 
lowfrequncy-components and only saving 
information of where there are abrupt changes. 

7.4 Filtering adaptively 
  By adaptive filtering one usually means, either a 
setup where a system transfer function is identified, 
or a setup where a set of filter parameters are 
configured to minimize the difference between two 
signals. 
  The identification setup is usually performed by 
an iterative method like LMS, to determine a set of 
FIR parameters. This approach is equivalent to 
5.2.13. 
  In this report, filtering adaptively, refers to a 
recursive way of setting the cut-off frequency for 
the preprocessing filter.  
  Finding a source for the decision of cut-off 
frequency can be tedious, but referring to the 
algorithm developed in this project (5.2.19), this 
was solved by assuming the mean of all segments 
saved, to be an upper limit for the fundamental 
frequency. Therefore, the preprocessing lowpass 
filter was set to cut at this upper limit frequency.  
  The advantage is that a very tight lowpass filtering 
can be achieved, and the pre-processor will remove 
some of the harmonics. As seen in 7.1, this is 
important for improved performance. 
  The risks of filtering adaptively, is that when 
abrupt changes of the input signal occur, the filter 
cut-off will not respond, resulting in an 
extinguished signal. However, the simulations 
made, have shown that the method can follow fast 
changes of pitch. 
  Abrupt variations of the cut-off frequency for a 
high-ordered filter, may cause the filter to become 
‘unstable’, in the sense that it’s amplitude will run 
toward a great value. 
  A solution to this is to let the complex filter pole 
pairs move slowly through the complex plane. It 
can also be solved by using a filter of sufficiently 
low-order, or having the cut-off frequency change 
in quantized steps where the state of the filter is 
pre-calculated for the new cut-off frequency. In this 
project, the problem was solved using a low-
ordered filter.  
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7.5 Increasing resolution through 
interpolation 
  Interpolation of the signal samples, is necessary in 
most systems to improve resolution for pitch 
estimation. This is especially obvious at high 
pitched signals, where the number of samples per 
fundamental period can be very few. The resolution 
in time-domain is directly corresponding to the 
sampling frequency. If the period calculation is 
based on positive zero crossings, even a sampling 
rate of 96 kHz will result in a period estimation 
accuracy corresponding to 100 cent error for a 
semitone close to 4,0 kHz but only maximum 2 
cent error for a tone at 100 Hz. 
  Zero crossing interpolation is most easily 
calculated using a linear interpolation between the 
two samples on each side of the zero level.  
  A way of improving the estimate for period time, 
and make it robust to noise was proposed by Johan 
Liljencrants [39], where each sample in two 
adjacent periods are compared. It needs more 
calculations but results in an improved estimate. 
  Peak interpolation is not only used for peaks in 
time-domain, but also at spectral peaks as a useful 
way of improving the resolution for a DFT. 
  A common way of doing this is to fit a parabola to 
the three values situated where the maximum point 
is. This can be done by a least squares 
approximation of the three points to the function 
ax2 + bx + c = y, which will yield a maximum 
value index xmax = -b / 2a. 
  The phase vocoder can also be seen as a technique 
interpolating adjacent DFT frames (See 5.3.8). 

7.6 Spectral flattening 
  Removing the formant structure from the signal is 
called spectral flattening. There are linear and non-
linear methods. 
  The linear methods involve filtering methods. 
Sondhi proposed a method where the signal is run 
through a bandpass filterbank [3]. The output from 
each filter is divided by its mean-energy, and then 
summed up, in a resulting spectral flattened signal. 
Sondhi himself though claimed this method to be 
inferior to the center clipping technique (7.6.2). An 
alternative used in voice signal is inverse filtering 
(7.11) 
  The non-linear methods for spectral flattening are 
more common and originates from 1948 [3]. The 
following sections discuss the functions normally 
used. 
  The performance of the PDA is improved if the 
non-linear processing is performed prior to the 
lowpass filtering [40]. 

7.6.1 Cubic non-linear distortion 
  One approach for degrading the formant structure, 
is cubic distortion. Each signal sample is then 
raised to factor 3. The performance is comparable 
to center clipping [3], but has the disadvantage of 
being amplitude dependent. 
  An alternative is squaring the signal with 
maintained sign. 

7.6.2 Center Clipping 
  The Center-Clipping function sets all absolute 
values under a threshold to zero. This is a common 
spectral flattening technique. What the threshold 
value should be set to, is not specified. A common 
approach is to adjust the level according to the 
maximum value discovered in the most recent part 
of the signal. Hess [3] propose a method where the 
last 30 ms of the signal is divided in three 
segments. A maximum value for each of the 
segments is found. The clipping level is then set to 
80 % of the smallest of the maximum values found. 
 

 
figure 7.b. Center Clipping Function 

7.6.3 Center Compression 
  Letting the signal be both Center-Clipped and 
compressed results in a function according to 
figure. This is the method chosen for this project’s 
implementation, based on a great comparative study 
by Rabiner in 1977 [3], where the Center 
Compression technique showed nice results. 
Simulations have been done to confirm the results. 
In the study, Rabiner compared peak-clipping, 
center-clipping, center-clipping and compression 
and the sign function. 
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figure 7.c. The Center-Compression Function  

7.6.4 Sign function 
  An alternative spectral flattening technique 
performs compression and only save the polarity 
information of the signal, as described in figure 7. 

 
figure 7.d. The Sign Function 
 

7.7 Adaptive Spectral Flattening 
  The spectral flattening techniques are normally 
using recursive methods. Setting the clipping level 
to a constant value will of course make the method 
very sensitive to the signal amplitude. 
  The level can be set similar to the approach 
described in 7.6.2. This is an elegant way of 
reducing the influence of amplitude-varying signals 
to the pitch estimation result. 
  This project’s implementation sets the compress-
level to 20 % of the maximum found in the last four 
segment’s. (See 9) 
  A problem that can occur, is that when the 
processed signal does unexpected jumps, the 
compress level will be set unnecessarily high. This 
happened in the project when the signal became 
unstable at filter cut-off changes as discussed in 
7.4. 

7.8 Downsampling the Input Signal 
  Downsampling is an easy and efficient way of 
reducing data, as was the purpose of preprocessing. 
The Nyquist Criterion and the measuring range sets 
a limit for the amount of downsampling possible. 
Since we’re interested in signals having frequencies 
up to 4000-5000 Hz, downsampling so the 
sampling rate fall short of 10 kHz, will be 
devastating. According to section 3.5, no 
information is lost if the sampling frequency is 
above the Nyquist rate. 
  Another problem is the loss of resolution at zero-
crossings and at peaks, which will decrease the 
accuracy in corresponding period estimates. This 
can however be solved by keeping higher sample 
rate at zero crossings. 
  One advantage of the frequency domain PDA’s, is 
that the spectral resolution and with it, the accuracy 
of the measurement, does not suffer from time 
domain downsampling. 

7.9 Inverse filtering 
  Not analyzed in this project, but useful on voice 
signals. A filter is adapted to the vocal tract (2.3) 
and the signal is inverse filtered to reconstruct the 
glottal signal (2.3), which is easier pitch estimate.  
  A major drawback is that prior knowledge of the 
system frequency response is necessary. 
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8. Postprocessing 
  Postprocessing is the functional block put at the 
end of the pitch period determination algorithm. Its 
task is to remove obvious pitch detection errors and 
to refine the result. The most obvious errors 
occurring in a PDA are octave errors, since higher 
partials are tracked. 

8.1 Online and Offline 
postprocessing 

  In offline postprocessing, all future and past data 
are available at the instant where the pitch estimate 
is calculated. This of course facilitates the search of 
occurred pitch errors.  
  Dynamic programming is one method of efficient 
offline postprocessing, which is possible to 
implement if a measure of the strength of each pitch 
estimate is available. The pitch contour is found as 
the pitch path with minimum error. Thus it can find 
an optimal pitch contour in a global sense, though 
not optimal at each estimate. The optimal path can 
also be found using the Viterbi algorithm [41].  
  In this project however, this area has not been 
investigated since the pitch must be presented 
instantaneous. The functions used here can be 
labelled online postprocessing functions. 

8.2 Time to Frequency conversion 
  One obvious function in the postprocessor is 
converting the pitch period estimate 0̂T  to pitch 

estimate 0F̂ , in case period is the output of the basic 
extractor. 

8.3 Linear Smoothing 
  Linear smoothing is done through lowpass 
filtering the pitch estimate. The filter length 
depends on the update rate of the estimate, but 
should be kept short, avoiding delay of the 
response. The length is best found by experiment. 
A length of three was used in the project. 

8.4 Non-Linear Smoothing 
  The median filter is non-linear. 0F̂  values are 
stored in a vector which is sorted in augmenting 
order. The output of the filter is the center value of 
the vector. The length of the vector must be odd 
and be kept short as discussed in 8.3. 

8.5 De-Step Filter 
  Bagshaw presented (1994) [42] a filter where the 
pitch is only allowed to change 75 % of an octave 
from one estimate to another if there is a continuous 

signal. Else a doubling or halving error has 
occurred. 
  Each pitch estimate value F0 is put in a group Gx. 
If a doubling error occur, the new value is put in a 
higher group, i.e. x is increased. If a halving error 
occur, x is decreased. 
  The group that has most values is considered 
holding the correct estimate and for that group, x is 
set to zero. 
Let fi represent the i:th value of the current F0 
estimates, that is put in group Gx(i). The group index 
x(i) is calculated according to 
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Thus G0 represents the group having most F0 
values. The F0 values are then corrected through a 
multiplication with 2-x(i). 
  The method should include flushing of the group 
vectors, when a new note is detected. 

8.6 Confidence Counter 
  Cooper and Ng used a confidence counter in their 
algorithm [1]. When a pitch estimate is found, a 
confidence counter is increased each time the same 
pitch is recognized at subsequent estimates, 
otherwise decreased. The system responds when the 
confidence count reaches a pre-defined maximum28. 

8.7 Using “rules” 
  When implementing a PDA, there are “rules” that 
can be used for increasing the performance of the 
algorithm. These rules can be used for recursive 
control of the algorithm. The control can be 
dependant on an accuracy measure of the estimate. 
Such a measure can in most algorithms be derived. 
Using the “rules” is a design matter which can be 
optimized by the PDA constructor. 
  The pitch estimate can be restricted to a 
predefined measuring range. If an estimate is found 
outside this interval, it is abandoned. The 
preprocessing BP filter (7.2) could take care of this, 
but the rules can be used as preventive measures. 
  If the energy of the signal is too low, below a 
certain threshold, it may be suitable to abandon the 
estimate or deactivate the gate signal (9.5.2). 
  When there is a sudden raise of the signal energy, 
it is likely that a new note is played and then also a 
new pitch. This could help when aiming for short 
response time. 
                                                           
28 Cooper and Ng used a confidence maximum of 3. 
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9. Development and 
implementation of an 
efficient PDA in a DSP 

  The goal for the project was to implement one of 
the algorithms found in the study, in an existing 
musical synthesis system. The algorithm used and 
the system is described here. 

9.1 The project specification 
  The specification for the project was given as 
follows: 
• A consistent literature search and study of the 

pitch determination area, to obtain a number of 
algorithms and acquire knowledge of the 
complex of problems. 

• Choose a number of promising algorithms, 
considering the target systems architecture, 
memory access, computational capacity and of 
course the characteristics of the expected 
material. 

• Perform a first evaluation in MATLAB® or 
another highlevel language being appropriate. 

• From the results and received experiences 
choose, alternatively develop a few variants for 
realtime implementation in the target system. 
The implementation is done in assembler for 
the signal processors. 

• Perform evaluation and incorporate the result 
as a finished module in the product. 

The assembler program is run in a Motorola 56303, 
80 MHz processor with 4k + 2k + 2k word RAM. 
The pitch tracking module may use about 200 word 
program memory, 200 word variable memory and 
use about 100 cycles. (In this processor one 
multiplication can be performed in one cycle.) 

9.2 About the Nord Modular System 
  The target system for implementation was the 
Nord Modular Synthesizer. This system uses 
virtual-analog modular synthesis, which means that 
digital technique is used to make a synthesizeer 
having an analog feeling.  
  A modular synthesizer is built up from 
interconnected basic modules, such as filters and 
oscillators. In the Nord Modular, the modules are 
linked together by the user in a software editor. 
There are a great number of modules, which makes 
great possibilities for generating varied sounds. At 
the instant a change is made to the patch29, a new 
DSP program is compiled and uploaded to the 
synthesizer. 
  A pitch tracking module does not exist in the 
current system, but would be appreciated. 
                                                           
29 Patch is the group of modules setup by the user. 

9.3 Theory of the Algorithm 
  The PDA that was decided to be tried for 
implementation was the algorithm already 
described in 5.2.19. The algorithm is described in 
figure 9.a.  
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figure 9.a) The Reduced ACF algorithm 
  
 The details for the implementation can be found in 
a MATLAB®-script in appendix A. However some 
of the blocks are briefly presented here: 
  CC - Center Clipping and Compression, where 
the level is set at 40 % of the highest maximum in 
the four most recent segments. 
  LP - Lowpass filter, where the cutoff frequency is 
set as the mean value of the four most recent 
segment lengths. 
  Silence Control - Checks if the signal is beneath a 
certain threshold during a certain time. 
  Find Min- & Max- Segment - Picks the segment 
having the largest max value and also the segment 
having the largest min value. 
  Calculate Resulting Period Estimate - The 
maximum segment and the minimum segment are 
computed independently for a period. If the results 



Implementation and Analysis of 
Pitch Tracking Algorithms 
2001-12-19 

Stefan Uppgård 
Report for  

Master of Science Thesis Project 
at Clavia and KTH S3 

Release: P1.0.14 
 
 
 

 

   
 

46

only differ a small value, the mean of the two is 
presented as the fundamental period estimate. 

9.4 Implementation in the DSP 
  The computational load on the DSP should be as 
low as possible. The implementation has been 
written in assembly code, for most efficient use of 
the processor cycles. 
  The resources available in the system for the pitch 
tracking algorithm is in program memory 200 
words (24 bits / word), variable memory 200 words 
and 100 processor cycles. This is explained by the 
fact that the sampling frequency is 96 kHz and the 
processor runs at 80 MHz. 
  Some changes were made to the algorithm, to 
make it more suitable for implementation. Making 
divisions costs! For 24 bit resolution, one division 
costs 24 cycles. In the specification for the project, 
one module should preferably use only about 100 
cycles (numbers are represented in 24 bits in the 
system).  
  When correlating value a in segment 1, to b in 
segment 2, the calculation is made from  
(ab / (aa+bb-ab), using the same method as the 
Cooper and Ng algorithm. This has to be calculated 
three times, since each segment is represented by 
three characteristical values. 
  A correlation could simply be calculated as: a / b, 
if the denumerator is greater than the numerator. 
Simulations did not show any deterioration in 
performance. The total correlation of the values a to 
b, c to d and e to f, could then be calculated by only 
one division: (1/3) * (adf + bcf + bde) / (bdf). As 
shown in figure 9.b, this actually did not worsen the 
performance. 

figure 9.b) An example where the simplified ratio 
function actually makes it easier to find a suitable 
threshold when comparing adjacent segment’s. 
(Red on the right and Blue on the left.) 

9.5 PDA-related functions 
  Other control signals than the pitch estimate itself 
are useful. A few are mentioned here. 

9.5.1 Event Detection 
  In voice analysis it is useful to know if the signal 
is voiced or unvoiced. That matter has not been 
analyzed in this project, since the focus has been on 
musical signals. 
  Note detection is most simply done by observing 
the energy of the signal. When there is a sudden 
change of energy, a new note is assumed to be 
played. 
The end of a tone is either a new tone or a pause. A 
pause is detected by calculating the mean energy 
during recent samples, and comparing this to a 
certain threshold. 

9.5.2 Gate signal 
  A gate signal can be used as an output of the pitch 
detection unit, to indicate if the pitch signal is valid 
or not. The signal energy should be reflected in the 
gate signal, so that low energy cause a non-valid 
indication.  
  The algorithm itself can also have functions 
indicating if the pitch estimate is trustworthy, and 
setting the gate signal according to this. 

9.5.3 Signal level 
  An output of the signallevel would make the unit a 
complete signal analyzer. This is not linked to the 
pitch, but definitely useful when resynthesizing the 
source signal. 

9.6 Future Improvements 
  Making the algorithm even cheaper in calculations 
is not probable without worsen the performance 
severely. 
  If the number of calculations is not the limit, 
improvements of the performance is however 
possible. 
  The selection of segments could e.g. be improved 
by using a two-threshold method (compare 5.2.4), 
instead of picking it from zero crossings. 
  It would be possible to add additional correlation 
values, such as the curve area. However, in 
simulations it has been shown that there is only a 
small improvement by adding this correlation 
value, since the area measure is close related to 
length and height. Better would be to add an 
orthogonal measure, such as a curvature measure, 
counting the number of derivative change per 
segment. 
  The response time could be improved by giving an 
estimate by chance at the attack of tones, e.g. the 
having the period estimates given by the most 
recent segment length or given by an envelope 
following algorithm running in parallel. 
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10. Conclusions 
  The conclusions that can be drawn from the 
results of the simulations are discussed here. 

10.1 Spectral and Time Domain PDA 
  The simulations have shown that spectral 
functions certainly can give good results, but there 
is more than only the transform to it. A fairly 
demanding analysis of the spectrum is needed for 
accurately finding the correct fundamental 
frequency estimate. 
  Time domain PDA's are inferior to the best 
spectral algorithms but still, they are able to 
produce quite good results, considering the often 
cheap computational load. 
  The PDA developed in this project is an example 
of a cheap implementation. The result for it is 
inferior to what would be reachable for an ordinary 
autocorrelation method. However, the results are 
surprisingly good. 
  Other successful PDA's use both spectral domain 
and time domain functions. There are examples 
where time domain is used for event detection and 
spectral domain is used for pitch detection, such as 
Davies/Etter's proposal from 1997 [43]. 

10.2 Pre- and Postprocessing 
  Preprocessing has shown to be an important issue 
for the PDA performance. This has been explored 
by recursively setting the lowpass filter cut-off 
frequency and the center clipping - compression 
level. 
  The perfect preprocessing method, would 
extinguish the harmonic overtones and strengthen 
the fundamental. This is however very difficult. 
  Postprocessing is difficult in an online situation. 
Here, it has been used for a short window pitch 
contour smoother and some rules for in which 
interval the pitch is allowed to be estimated. 

10.3 Today’s processors and memory 
influence of hardware when 
choosing PDA 

  For efficient real-time PDA's, with more 
intelligence, lots of calculations need to be done. 
This demands for even faster processors. More 
memory will of course also be necessary when 
implementing ACF functions and Fast Fourier 
Transforms. 
  The development of faster processors and more 
memory has continued, which is promising. 

10.4 The future of  
Musical Pitch Tracking 

  The key for improved pitch determination 
algorithms is probably the combination of different 
existing methods. Hess [3] says: "Rather than 
developing new principles of pitch determination, 
one should take the existing ones and combine them 
in an appropriate way to yield an overall 
improvement of performance." He continues: 
"When combining several principles one must take 
care that they perform in a complementary way so 
that the one works well where the other fails and 
vice versa." 
  This study would have looked different if the goal 
was not to develop an algorithm for implementation 
in hardware, maybe being more focused on 
combining different methods.  
  However, also the reduced ACF PDA presented in 
this report, is a combination of different methods, 
namely polarity crossing analysis and correlation. 
  Preferably the PDA should be as intelligent as the 
human eye, in determining the fundamental period 
manually. The human eye and mind, can by looking 
at the time domain signal, quite accurately find the 
periodic behavior. 
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Appendix A 
Sample MATLAB-code for the Reduced ACF 
PDA. 
 
function [pitch_vec,Y] = reduced_acf (Y,FS) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Master Thesis on pitch tracking SU and LR 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%% Reduced acf algorithm. 
%%% Version 13.0, 2001-10-16 
%%% Correlates 3 values: min-, max- and periodlength of each 
%%% segment. 
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Initiate values 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Antal_Segment     = 8; 
Start_segm            = 8; 
 
%%% Algorithm-spec. variables: 
max_pitch            = 5000; 
min_pitch            = 30; 
L = length(Y); 
pitch_est  = 0; 
pitch_vec  = zeros(1,L); 
zero_crossed  = 0; 
Y1 = Y; % used when filtering 
MATRIX  = zeros( 5, Antal_Segment); 
max_value = 0; 
previous_max_value= 0; 
min_value = 0; 
s  = 0; 
p_tx_old             = 0; 
area_ok_flag         = 0; 
AREA1_proc = 0.3;  % 0.2 = 20%.  
AREA2_proc = 0.3;  % 0.6 = 60%.  
Similarity_threshold= 0.9; % 0.9 = 90%.  
%%%Percentage of how similar two segments are. 
 
sim_index       = 8;  
similarity_vector     = [0.8 0.7 0.7 0.7 0.6 0.6 0.5 0.5]; 
similarity_vec_save = zeros(1,L); 
min_max_sim         = 0.05; 
atleast_one_similarity= 0.9; 
time_threshold       = 0.1; 
%%% 
gate                     = 0;% gate = 1 if pitch estimate ok, else 0. 
gate_vec                 = zeros(1,L); 
silent_threshold       = 0.02; 
silent_counter          = 0; 
silent_flag              = 0;        % 0 if signal has been silent. 
current_sign = sign(Y(1)); 
do_zeroX                 = 0; 
lost_pitch               = 0; 
compress_level  = 0.01; 
compress_level_vec = zeros(1,L); 
compress_rate        = 0.2; 
cut_off_freq = 5286; 
cut_off_freq_lp = zeros(1,L); 
p_tx                     = 0; 
period                   = 0; 
period_old               = 0; 
past_period             = zeros(1,3); 
% Init for LP filter 
x_n                      = 0; 
x_n_1                    = 0; 

y_lp                     = 0; 
ylp_n_1                  = 0; 
w_n                      = 0; 
w_n_1                    = 0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Run the algorithm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for (p = 1: L-1) 
    %%% --PREPROCESSING:-- 
    cut_off_freq_lp(p) = cut_off_freq; 
    compress_level     = 0.99 * compress_level; 
    compress_level_vec(p) = compress_level; 
    similarity_vec_save(p) = Similarity_threshold; 
      
    %%% --Clip and Compress-- 
    if( (Y1(p) < compress_level) & (Y1(p) > -compress_level) ) 
        Y1(p) = 0; 
    else 
        if(Y1(p) > 0) 
            Y1(p) = Y1(p) - compress_level; 
        else 
            Y1(p) = Y1(p) + compress_level; 
        end 
    end 
     
    %%% -LP-filtering:- state filter a la NL. 
    f_cut = cut_off_freq; 
    q       = f_cut / FS; 
    F       = 2*sin(pi*q); 
    Q      = 0.5; 
    R      = 1 / Q; 
 
    x_n   = Y1(p); 
    w_n  = F*x_n_1 - F*ylp_n_1 + (1-F*R)*w_n_1; 
    ylp_n= ylp_n_1 + F*w_n;    
    x_n_1   = x_n; 
    ylp_n_1= ylp_n; 
    w_n_1  = w_n; 
    Y(p) = ylp_n; 
         
    %%% Silent signal? 
    if(abs(Y(p)) < silent_threshold) 
        silent_counter      = silent_counter + 1;         
        if(silent_counter == 1200) 
            gate            = 0; 
            silent_flag     = 0; 
            silent_counter  = 0; 
            cut_off_freq    = 5280; 
            lost_pitch      = 1; 
            sim_index       = 8;             
            Similarity_threshold        = similarity_vector(sim_index); 
        end   
    else 
        silent_counter  = 0; 
    end     
%AREA2_proc = sign(max(0,s - period))*(AREA2_proc*0.95); 
    if(s > 2*period) 
        AREA2_proc = AREA2_proc*0.95; 
        AREA1_proc = AREA1_proc*0.96;     
    end 
     
    %%% --MAINPROCESSING:-- 
    %%% --Setting signs and direction-variables:-- 
    previous_sign          = current_sign; 
    current_sign          = sign(Y(p)); 
    zer_pos                 = 0; 
    neg_pos                 = 0; 
     
    if((current_sign==1)&(previous_sign==0)); 
        zer_pos = 1; 
    end 
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    if((current_sign==1)&(previous_sign==-1)); 
        neg_pos = 1; 
    end 
     
    if( (current_sign < 0) & (abs(min_value) >  
(AREA2_proc*max_value)) )  
 
%%% Flag-setting because the current negative area-segment is 
%%% big enough compared to previous pos.area-segm.: 
        area_ok_flag = 1;  
    end 
     
    %%% --Setting the correlation-values:-- 
    s = s + 1;        % Counter; numbers of samples 
    if(Y(p) > max_value) 
        max_value = Y(p); % corr-value 
    end 
    if(Y(p) < min_value) 
        min_value = Y(p); % corr-value 
    end 
     
    %%% --Setting the "zero_crossed"-flag  
    if ( do_zeroX ) 
        if( (max_value < AREA1_proc*previous_max_value | 
                   ~area_ok_flag));% & (peaks_passed == 0)) % |           
            do_zeroX  = 0; 
        else 
            p_tx_old   = p_tx; 
            %p_tx       = (p - 2) + ( 1 - (Y(p-1) / (Y(p) - Y(p-1))) ); 
            %%% Alternative interpolation 
            y_3           = Y(p-1) - 0.5*(Y(p) - Y(p-1)); 
            x_3           = 0.5; 
            y_4           = y_3 - (sign(y_3) * 0.25 * (Y(p) - Y(p-1))); 
            x_4           = 0.5 + (sign(y_3) * 0.25); 
            x_5           = x_4 + (sign(y_4) * 0.125); 
            p_tx          = p - x_5;             
            %%%            
            do_zeroX            = 0; 
            zero_crossed       = 1; 
                    
            MATRIX(1:3,1)       = MATRIX(1:3,2); 
            MATRIX(1:3,2)       = MATRIX(1:3,3); 
            MATRIX(1:3,3)       = MATRIX(1:3,4); 
            MATRIX(1:3,4)       = MATRIX(1:3,5);             
            MATRIX(1:3,5)       = MATRIX(1:3,6); 
            MATRIX(1:3,6)       = MATRIX(1:3,7);             
            MATRIX(1:3,7)       = MATRIX(1:3,8);             
            MATRIX(1:3,8)       = [max_value min_value (p_tx – 
   p_tx_old)]'; 
            MATRIX              = silent_flag * MATRIX; 
            Start_segm = Start_segm + (1-silent_flag)*(9 – 

 Start_segm); 
        end 
    else  
        zero_crossed = 0; 
    end 
    if ( (neg_pos | zer_pos) & area_ok_flag ) 
        do_zeroX = 1; 
    end     
    %%% --Calculations when zero is crossed from neg to pos.:--- 
    if( zero_crossed ) 
        %%% -Calculation-algorithm starts 
        gate                = 1; 
         
        AREA2_proc = 0.3; 
        AREA1_proc = 0.3; 
         
        Start_segm = max(1,Start_segm - 1); 
 
        [max_place_value, index_max] = max(MATRIX(1,:)); 
        [min_place_value, index_min]  = max(abs(MATRIX(2,:))); 
        if( index_max == index_min ) 
            temp_vec                        = MATRIX(2,:); 

            temp_vec(index_min)    = 0; 
            [max_place_valu2, index_min]    = max(abs(temp_vec)); 
        end 
         
        %%% 
        if (index_max == 8 | pitch_est == 0)            
            atleast_one_similarity       = 0.6; 
            min_max_sim                  = 0.7; 
            time_threshold               = 0.3;     
        else 
            min_max_sim                  = 0.05; 
            time_threshold               = 0.1; 
        end 
         
        MATRIX(4:5,:) = 0; 
        i_max              = index_max; 
        period_max      = MATRIX(3,index_max); 
        jumping_index = max(Start_segm,index_max); 
        jump_direction = -1; 
        jumping_FLAG= 0; 
        test=0; 
        stop_FLAG_max= 0; 
                 
        i_max  = index_max; 
        for(d                = 1 : Antal_Segment-Start_segm) 
             
            if(jumping_index == 8 & test == 0) 
                jumping_FLAG = 1; 
                jump_direction =-1; 
                jumping_index = jumping_index - d;     
                test=1; 
            end 
            if(jumping_index == Start_segm & test == 0) 
                jumping_FLAG = 1; 
                jump_direction =1; 
                jumping_index = jumping_index + d;     
                test=1;     
            end 
            test=test+test; 
            if(jumping_FLAG == 1 & test > 2) 
                jumping_index = jumping_index + jump_direction; 
            elseif(test==0) 
                jumping_index = jumping_index + jump_direction*d; 
                jump_direction  = -1*jump_direction;     
            end 
                                    
            asim   = min([MATRIX(1, index_max) 

 MATRIX(1,jumping_index)]); 
            bsim   = max([MATRIX(1, index_max) 

 MATRIX(1,jumping_index)]); 
            csim   = max([MATRIX(2, index_max) 

 MATRIX(2,jumping_index)]); 
            dsim   = min([MATRIX(2, index_max) 

 MATRIX(2,jumping_index)]); 
            esim   = min([MATRIX(3, index_max) 

 MATRIX(3,jumping_index)]); 
            fsim   = max([MATRIX(3, index_max) 

 MATRIX(3,jumping_index)]); 
             
            sim_ratio_alternative =  

(1/3) * (asim*dsim*fsim +  
bsim*csim*fsim + bsim*dsim*esim) / 
(bsim*dsim*fsim); 

            MATRIX(4,jumping_index) = sim_ratio_alternative; 
            if(stop_FLAG_max ~= 1  

& MATRIX(4,jumping_index) >   
MATRIX(4,i_max)) 

                i_max = jumping_index; 
            end             
            if(MATRIX(4,jumping_index)>Similarity_threshold  

& stop_FLAG_max ~= 1) 
                i_max              = jumping_index; 
                stop_FLAG_max = 1; 
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              end 
         end 
        i_min  = index_min; 
        period_min  = MATRIX(3,index_min); 
        period_max      = MATRIX(3,index_min); 
        jumping_index = max(Start_segm,index_min); 
        jump_direction = -1; 
        jumping_FLAG =0; 
        test=0; 
        stop_FLAG_min=0; 
        period_A  = MATRIX(3,index_min); 
        period_B  = MATRIX(3,index_min); 
        i_min  = index_min; 
        for(d = 1 : Antal_Segment-Start_segm) 
                if(jumping_index == 8 & test == 0) 
                jumping_FLAG = 1; 
                jump_direction=-1; 
                jumping_index = jumping_index - d;     
                test=1; 
            end             
            if(jumping_index == Start_segm & test == 0) 
                jumping_FLAG = 1; 
                jump_direction=1; 
                jumping_index = jumping_index + d;     
                test=1;     
            end             
            test=test+test; 
            if(jumping_FLAG == 1 & test > 2) 
                jumping_index = jumping_index + jump_direction; 
            elseif(test==0) 
                jumping_index = jumping_index + jump_direction*d; 
                jump_direction  = -1*jump_direction;     
            end             
            asim   = min([MATRIX(1, index_min) 

MATRIX(1,jumping_index)]); 
            bsim   = max([MATRIX(1, index_min)  

MATRIX(1,jumping_index)]); 
            csim   = max([MATRIX(2, index_min) 

MATRIX(2,jumping_index)]); 
            dsim   = min([MATRIX(2, index_min) 

MATRIX(2,jumping_index)]); 
            esim   = min([MATRIX(3, index_min) 

MATRIX(3,jumping_index)]); 
            fsim   = max([MATRIX(3, index_min) 

MATRIX(3,jumping_index)]);             
            sim_ratio_alternative = (1/3) *  

(asim*dsim*fsim +  
bsim*csim*fsim + bsim*dsim*esim) / 
(bsim*dsim*fsim); 

            MATRIX(5,jumping_index) = sim_ratio_alternative;             
            if(stop_FLAG_min ~= 1 &  

MATRIX(5,jumping_index) > 
MATRIX(5,i_min)) 

                i_min = jumping_index; 
            end             
            if(MATRIX(5,jumping_index)>Similarity_threshold  

& stop_FLAG_min ~= 1) 
                i_min = jumping_index; 
                stop_FLAG_min = 1; 
            end 
        end         
        if(i_min<index_min) 
            period_min=sum(MATRIX(3,i_min + 1:index_min)); 
        else 
             period_min=sum(MATRIX(3,index_min:i_min-1)); 
        end 
        if(i_max<index_max) 
            period_max=sum(MATRIX(3,i_max + 1:index_max)); 
        else 
             period_max=sum(MATRIX(3,index_max:i_max-1)); 
        end 
        period_min=sign(abs(i_min-index_min))*period_min; 
        period_max=sign(abs(i_max-index_max))*period_max;                 

        if(abs(1-period_max/max(1,period_min))  < min_max_sim 
             & (MATRIX(4, i_max) > atleast_one_similarity  
              | MATRIX(5, i_min) > atleast_one_similarity)) 
            period = (period_max + period_min )*0.5; 
        else 
            period = period_old; 
            lost_pitch = 1;     
        end         
        if(abs(MATRIX(3, i_max) - MATRIX(3, index_max)) >  
              ( MATRIX(3, index_max) * time_threshold ) | ... 
                abs(MATRIX(3, i_min) - MATRIX(3, index_min)) >  
               ( MATRIX(3, index_min) * time_threshold ) ) 
            period = period_old; 
            lost_pitch = 1; 
        end                
        compress_level = compress_rate*( max(MATRIX(1,5:8)) ); 
         
        %%% Calculate new cutoff frequency.         
        cut_off_freq            = FS / max(1,max(MATRIX(3,:))); 
        if(pitch_est > cut_off_freq) 
            temp_pi = find(MATRIX(3,:)); 
            if(isempty(temp_pi)) 
                cut_off_freq            = 5280;    
            else 
                cut_off_freq            = FS / 

 max(1,min(MATRIX(3,temp_pi))); 
            end 
        end 
        cut_off_freq                = 200+max(50,cut_off_freq);  
        cut_off_freq                = min(5000,cut_off_freq); 
 

if(cut_off_freq > 700 & pitch_est ~= 0), 
Similarity_threshold = 0.5; 

        else, Similarity_threshold = 0.8; end         
        period_old  = period;         
        %%% Reset the silent flag and setting other variables: 
        silent_flag         = 1;          
        previous_max_value  = max_value; 
        max_value      = 0; 
        s     = 0; 
        zero_crossed        = 0; 
        min_value      = 0; 
        area_ok_flag        = 0;                 
        if(lost_pitch) 
            if(Start_segm == 1) 
                MATRIX(1:5,1:5) = 0 * MATRIX(1:5,1:5); 
                Start_segm = 6; 
                lost_pitch=0;     
            end 
        end                
        pitch_est   = FS/max(1,period);         
        if( pitch_est > max_pitch | pitch_est < min_pitch ) 
            pitch_est = pitch_vec(max(1,p-1)); 
            period    = past_period(1);   
        end         
        past_period(2:end)  = past_period(1:end-1); 
        past_period(1)         = period; 
        period                      = mean(past_period);          
    end 
    gate_vec(p)     = gate; 
    if(~gate) 
        pitch_vec(p)    = 0; 
        pitch_est        = 0; 
        period           = 0; 
        period_old       = 0; 
    else 
        pitch_vec(p)  = pitch_est; 
    end  
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% End of algorithm 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Resources 
 
Software and hardware: The simulations of 
algorithms has been performed using 
MATLAB(R). Software development for the Nord 
Modular has been done in Codewright. 
  
Sound recordings analyzed and used in this report: 
[R1] Kristina at Clavia, singing “Fly me to the 
moon” by Howard 
[R2] Rasmus at Clavia, playing electric bass. 
[R3] Björn at Clavia, playing saxophone and 
acoustic guitar. 
[R4] Stefan Uppgård playing acoustical piano and 
the Rhodes electronical piano sounds from the Nord 
Electro keyboard. 
 
Other sounds analyzed during this project: 
Björn . playing the acoustical guitar. 
Stefan Uppgård singing, talking and playing other 
piano sounds from the Nord Electro keyboard. 
Leo Roos whistling, singing and talking. 
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